University of Swaziland \Rightarrow

Final Examination, 2017/2018

B.Sc. IV / B.Ed IV/ BASS IV

Title of Paper : Metric Spaces
Course Number : M431
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) Define a Metric space (M.S.)
(b) and thus prove the generalized triangular inequality for M.S.

A2. In a M.S $(X, d) \quad X=R^{2}, \quad x=(-1,1), y=(2,2)$. Find a distance $d(x, y)$ in the following M.S.
(a) Euclidean,
(b) Chicago,
(c) New York

A3. Let $X=R^{2}$ and $d(x, y)=\min \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$, where $x=\left(x_{1}, x_{2}\right) \subset X, y=$ $\left(y_{1}, y_{2}\right) \in X$.
Is (X, d) a M.S.? Explain.
A4. Let the sequence x_{n} in a set X with the discrete metric converges to $a \subset X$. What can you say about the terms of this sequence?

A5. Define a uniform convergence of real-valued functions on $D \subset R$.
A6. Prove that if for the sequence x_{n} in M.S. $\lim _{n \rightarrow \infty} x_{n}=x$ and $x \in X$, then any subsequence converges to the same limit.

A7. Give a definition and example of
(a) Bounded subset of M.S.
(b) Diameter of a non-empty bounded subset of M.S.
(c) Two Lipschitz equivalent metrics on a set X .

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Let $X=R^{2}$
(i) Define an Euclidean distance $d(x, y)$, where $x, y, \in X$.
(ii) Show that (X, d) is M.S.
(b) Given a sequence $x_{n}(t)=t^{n}, t \in[0,1]$
(i) Sketch the graphs of $x_{n}(t)$ for some n.
(ii) Find a limit function $x(t)=\lim _{n \rightarrow \infty} x_{n}(t)$.
(iii) Is $x(t)$ continuous on $[0,1]$? Explain.
(iv) State a negation of definiton of uniform convergence, and thus
(v) Show that the given sequence does not converge uniformly.

Hint: Take $\epsilon_{o}=\frac{1}{2}$ and t_{0} such that $t_{0}^{N} \geq \frac{1}{2}$ for any N.

QUESTION B2 [20 Marks]

B2. (a) Let $X=R^{2}$
(i) Define a Rasberry pickers (or a lift) distance $d(x, y), x, y \in X$.
(ii) Show that (X, d) is M.S.
(b) Prove M-test for uniform convergence
(i) Necessary condition
(ii) Sufficient condition
(c) Let $X=R^{2}, A \subset X, B \subset X$,
$A=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}<1\right\}$
$B=\{(1,0)\}$ just a point.
Find the distance $d(A, B)$. Is $d(A, B)$ a metric? Explain

QUESTION B3 [20 Marks]

B3. (a) Let $X=R^{2}$
(i) Define a London (or UK rail) distance $d(x, y), x, y \in X$.
(ii) Show that (X, d) is M.S.
(b) (i) Define an open ball in M.S. and sketch in R^{2} for
(ii) Euclidean metric
(iii) Chicago metric
(c) Is a set of irrational numbers closed in R ? Give an example to illustrate your statement.

QUESTION B4 [20 Marks]

B4. (a) Let $X=R^{n}$, and $d \infty(x, y)=\max \left\{x_{i}=y_{i} \mid, i=1,2, n\right\}$, in the usual notations. Show that $(X, d \infty)$ is M.S.
(b) Show that $d \infty$ and Euclidean d metrices are equivalent

Hint: Show $d \geq d \infty \geq \frac{d}{\sqrt{n}}$.
(c) (i) Show that if $f: R^{2} \rightarrow R$ is continuous and if A is closed in R, then $f^{-1}(A)$ is closed in R^{2},
(ii) and thus show that the set D
$D=\{(x, y): x y \geq 1\}$ is closed in R^{2}.

QUESTION B5 [20 Marks]

B5. (a) Let X be a set of bounded functions, and

$$
d(x, y)=\sup |x(t)-y(t)|, t \in[a, b] .
$$

Show that (X, d) is M.S.
(b) Let $x, y:[0,1] \rightarrow R$ be given by $x(t)=\frac{2}{3} t$ and $y(t)=[t]$ (the interger part of t). Evaluate the distance between these functions using "sup" metric.
(c) (i) Define a convergent sequence in M.S. and thus
(ii) Show that the sequence $x_{n}=\left(1-\frac{1}{2^{n-1}}, \frac{n^{2}+1}{2 n^{2}}\right), n=1,2 \ldots$, converges to ($1, \frac{1}{2}$) in Euclidean metric, and diverges in discrete metric.
(d) Prove that if a set A is complete in M.S. then it is closed.

