4

AR white

Final Examination, 2017/2018

B.Sc. IV/ B.Ed IV/ BASS IV

Title of Paper : Metric Spaces

Course Number : M431

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:

a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.

b. SECTION B

- There are FIVE (5) questions in Section B.

- Each question in Section B is worth 20 Marks.

- Answer ANY THREE (3) questions in Section B.

- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

- A1. (a) Define a Metric space (M.S.) (b) and thus prove the generalized triangular inequality for M.S. (3,3)A2. In a M.S (X,d) $X = R^2$, x = (-1,1), y = (2,2). Find a distance d(x,y) in the following M.S. (a) Euclidean, (b) Chicago, (3,3,3)(c) New York A3. Let $X = R^2$ and $d(x, y) = min(|x_1 - y_1|, |x_2 - y_2|)$, where $x = (x_1, x_2) \subset X, y =$ $(y_1, y_2) \in X.$ Is (X, d) a M.S.? Explain. (4)A4. Let the sequence x_n in a set X with the discrete metric converges to $a \in X$. What can you say about the terms of this sequence? (4)A5. Define a uniform convergence of real-valued functions on $D \subset R$. (3)A6. Prove that if for the sequence x_n in M.S. $\lim_{n \to \infty} x_n = x$ and $x \in X$, then any subsequence (4)converges to the same limit. A7. Give a definition and example of (a) Bounded subset of M.S. (b) Diameter of a non-empty bounded subset of M.S. (c) Two Lipschitz equivalent metrics on a set X. (3,3,4)SECTION B: Answer any THREE Questions QUESTION B1 [20 Marks] B1. (a) Let $X = R^2$ (i) Define an Euclidean distance d(x, y), where $x, y \in X$. (ii) Show that (X, d) is M.S. (2,5)(b) Given a sequence $x_n(t) = t^n, t \in [0, 1]$ (i) Sketch the graphs of $x_n(t)$ for some n. (ii) Find a limit function $x(t) = \lim_{n \to \infty} x_n(t)$.
 - (iii) Is x(t) continuous on [0, 1]? Explain.
 - (iv) State a negation of definiton of uniform convergence, and thus
 - (v) Show that the given sequence does not converge uniformly.
 - Hint: Take $\epsilon_o = \frac{1}{2}$ and t_0 such that $t_0^N \ge \frac{1}{2}$ for any N.

(2,2,1,3,5)

J

QUESTION B2 [20 Marks]

B2.	(a) Let $X = R^2$	
	(i) Define a Rasberry pickers (or a lift) distance $d(x, y), x, y \in X$.	
	(ii) Show that (X, d) is M.S.	(2,6)
	(b) Prove M-test for uniform convergence	
	(i) Necessary condition	
	(ii) Sufficient condition	(4, 4)
	(c) Let $X = R^2, A \subset X, B \subset X$,	
	$A = \big\{ (x_1, x_2) : x_1^2 + x_2^2 < 1 \big\}$	
	$B = \{(1,0)\}$ just a point.	
	Find the distance $d(A, B)$. Is $d(A, B)$ a metric? Explain	(4)

QUESTION B3 [20 Marks]

B3.	(a) Let $X = R^2$	
	(i) Define a London (or UK rail) distance $d(x, y), x, y \in X$.	
	(ii) Show that (X, d) is M.S.	(2,5)
	(b) (i) Define an open ball in M.S. and sketch in \mathbb{R}^2 for	
	(ii) Euclidean metric	
	(iii) Chicago metric	(3,3,4)
	(c) Is a set of irrational numbers closed in R? Give an example to illustrate your statement.	(3)

QUESTION B4 [20 Marks]

B4.	(a) Let $X = R^n$, and $d\infty(x, y) = \max \{x_i = y_i i = 1, 2, n\}$, in the usual notations. Show that $(X, d\infty)$ is M.S.	(6)
	(b) Show that $d\infty$ and Euclidean d metrices are equivalent	
	Hint: Show $d \ge d\infty \ge \frac{d}{\sqrt{n}}$.	(6)
	(c) (i) Show that if $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous and if A is closed in R, then $f^{-1}(A)$ is closed in \mathbb{R}^2 ,	
	(ii) and thus show that the set D	
	$D = \{(x, y) : xy \ge 1\}$ is closed in \mathbb{R}^2 .	(5,3,)

(6)

(4)

QUESTION B5 [20 Marks]

B5. (a) Let X be a set of bounded functions, and

$$d(x,y) = \sup |x(t) - y(t)|, t \in [a,b] \ .$$

Show that (X, d) is M.S.

(b) Let $x, y : [0, 1] \to R$ be given by $x(t) = \frac{2}{3}t$ and y(t) = [t] (the interger part of t). Evaluate the distance between these functions using "sup" metric. (3)

Ì

(c) (i) Define a convergent sequence in M.S. and thus

(ii) Show that the sequence $x_n = \left(1 - \frac{1}{2^{n-1}}, \frac{n^2 + 1}{2n^2}\right), n = 1, 2...,$

converges to $(1, \frac{1}{2})$ in Euclidean metric, and diverges in discrete metric. (2,5)

(d) Prove that if a set A is complete in M.S. then it is closed.

_END OF EXAMINATION PAPER___