University of Swaziland

Supplementary Examination, 2017/2018

B.Sc./ B.Ed./ BASS IV

Title of Paper : Metric Spaces
Course Number : M431
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. Let $x, y \in X$, where X is non-empty set.
(a) Define a metric $d(x, y)$ on X.
(b) Show that $d(x, y) \geq 0$.

A2. In a metric space (M.S.) (X, d) given $X=R^{2}, x=(1,-1), y=(3,2)$. Find a distance $d(x, y)$ in the following M.S.
(a) Euclidean
(b) Chacago
(c) New York

A3. Let $X=R^{2}$ and $d(x, y)=\left|x_{1}\right|+\left|y_{1}\right|+\left|x_{2}\right|+\left|y_{2}\right|$, where $x\left(x_{1}, x_{2}\right) \in X, y\left(y_{1}, y_{2}\right) \in X$. Is (X, d) a M.S.? Explain.
A. 4 Let the sequence of the continuous on $[a, b]$ functions $x_{n}(t), t \in[a, b]$, converges, to $x(t)$ with the " max" metric. Prove that $x_{n}\left(t_{0}\right) \rightarrow x\left(t_{0}\right)$ as $n \rightarrow \infty$ for any $t_{0} \in[a, b]$.

A5. State (without proof) M-test for uniform convergence.
A6. Prove that if $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$ as $n \rightarrow \infty$ in M.S., then $x=y$
A7. Condider M.S. $(X, d), X=R^{2}$ with the Euclidean metric. Let $A \subset X$. Find a diameter of A, if
(a) $A=\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}=1$,
(b) $A=\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}<1$,
(c) $A=\left(x_{1}, x_{2}\right):\left|x_{1}\right|<2,\left|x_{2}\right| \leq 1$.

A8. Give definition of a set $A \subset X$ in M.S. (X, d) which is
(a) Complete
(b) Compact.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B1 [20 Marks]

B1. (a) Let X be a complex plane
(i) prove that if $x, y, \in X$ then

$$
\begin{equation*}
|x+y| \leq|x|+|y| \tag{3,4}
\end{equation*}
$$

(ii) and thus prove that (X, d) is M.S. where $d(x, y)=|x-y|$.
(b) Given a sequence $x_{n}=\frac{n t}{1+n t}, n=0,1 \ldots t \in[0,1]$
(i) Sketch the graphs of $x_{n}(t)$ for some n.
(ii) Find a limit function $x(t)=\lim x_{n}(t)$ as $n \rightarrow \infty$
(iii) Is $x(t)$ continuous on $[0,1]$? Explain.
(iv) State a negation of definition of uniform convergence, and thus
(v) Show that the given sequence does not converge uniformly.

Hint: Take $\epsilon_{0}=\frac{1}{2}$ and t_{0} such that $N t_{0}<1$ for any N.

QUESTION B2 [20 Marks]

B2. (a) Let $X=R^{2}$
(i) Defne a New York (or two skyscrapers) distance $d(x, y), x, y \in X$.
(ii) Show that (X, d) is M.S.
(b) Given a sequence

$$
x_{n}(t)=n^{2} t(1-t)^{n} n=0,1, \ldots ; t \in[0,1] .
$$

(i) Show that the sequence converges pointwise on $[0,1]$.
(ii) Apply M -test to show that convergence is not uniform on $[0,1]$.

Hint: $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$.
(c) Let $X=R^{2}$. Consider three subsets
$A=\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}<1$,
$B=(1,0)$,
$C=(-1,0)$.
Find the distances $d(C, B), d(C, A), d(A, B)$ and thus show that this distance contradicts condition M3 of a metric.

QUESTION B3 [20 Marks]

B3. (a) Let $X=R^{2}$.
(i) Define a Chicago (or an skyscraper) distance $d(x, y), x, y \in X$.
(ii) Show that (X, d) is M.S.
(b) (i) Define an open ball is M.S. and sketch it in R^{2} for
(ii) $d \infty=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2},-y_{2}\right|\right\}$
(iii) discrete metric
(c) Consider a set $A \subset R^{2}$

$$
A=(x, y): x^{2}+y^{2}<2,
$$

and a sequence x_{n} in A.

$$
\begin{equation*}
x_{n}=\left(1-\frac{1}{n}, 1-\frac{1}{n}\right), n=1,2, \ldots \tag{4}
\end{equation*}
$$

Show that the set A is not closed.

QUESTION B4 [20 Marks]

B4. (a) Let $X=R^{n}$
(i) Define a Post-mail distance $d(x, y)$ for $x, y \in X$.
(ii) Show that (X, d) is M.S.
(b) Given $X=R^{2}$. Show that the Chicago metric d_{1} and the Euclidean metric d_{2} are equivalent.
Hint: Show $d_{1} \geq d_{2} \geq \frac{d_{1}}{\sqrt{2}}$.
(c) (i) Show that if $f: R^{2} \rightarrow R$ is continuous and if A is closed in R, then $f^{-1}(A)$ is closed in R^{2}, and thus
(ii) Show that the set $D, D=\{(x, y): a x+b y \leq c, \quad a, b, c\}$ reals not all zero is closed in R^{2}

QUESTION B5 [20 Marks]

B5. (a) Let X be the set of continuous functions from $[a, b]$ to R, and for any $x, y, \in X$ define

$$
d(x, y)=\max |x(t)-y(t)|: t \in[a, b] .
$$

Prove that (X, d) is M.S.
(b) For the metric $d(x, y)$ in (a) find $d(x, y)$ if $x=\sin t, \quad y=\cos t, \quad t \in[0,2 \pi]$
(c) (i) Define a convergent sequence in M.S. and thus
(ii) Show that the sequence Z_{n},

$$
\begin{equation*}
Z_{n}=\cos \frac{\pi}{n}+i \sin \frac{\pi}{n}, n=1,2, \ldots \ldots \tag{2,5}
\end{equation*}
$$

converges to 1 in complex plane metric and diverges in discrete metric.
(d) Prove that if a set A is compact in M.S., then it is complete

