University of Swaziland

Main Examination, 2017/2018

B.Sc. IV, BASS IV, B.Ed IV

Title of Paper : Fluid Dynamics
Course Number : M455
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of SIX (6) questions in TWO sections.
2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section. If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked
4. Show all your working.
5. Start each new major question (A1, B1-B5) on a new page and clearly indicate the question number at the top of the page.
6. Indicate your program next to your student ID.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION AI [40 Marks]

A1. Among four states of matter define
(a) Solids,
(b) Liquids.

A2. Describe the Lagrange method of treating motion of continuum medium.
A3. A velocity feld in polar is given as
$\bar{V}=\frac{A}{r}\left(\bar{e}_{r}+\bar{e}_{\theta}\right)$
Find the stream line passing through the point $(r, \theta)=(1,0)$.
A4. Does the following set of velocity components $u=2 x y-x^{2}+y, \quad v=2 x y-y^{2}+x^{2}$, represent two-dimensional
(a) incompressible flow,
(b) irrotational flow?

A5. Explain the term $\tau_{x z}$.
A6. A closed container contains water at a 5 m deptli. The absolute pressure above the water surface is 0.3 atm . Calculate the absolute pressure on the inside of the bottom surface of the container.
Hint: $1 \mathrm{~atm}=101.3 \mathrm{kpa}$.
A7. Write down
(a) Euler equation of the motion,
(b) Novier-Stoke's equation (NSE) for incopressible flow.
(c) NSE in dimensionless form.

A8. Apply Euler equation for potential force field and vector identity given in "useful formulae" to show that

$$
\bar{V} \times \bar{\omega}=\nabla\left(\frac{1}{2} V^{2}+\phi+\frac{p}{\rho}\right)
$$

in the usual notations.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B1 [20 Marks]
a) Define a density at a point using a continuum model.
b) Consider the flow field given in Eulerian description by the expression $\bar{V}=A i+B t j$, where $A=2 \frac{m}{s}, B=0.3 \frac{m}{s^{2}}$, and the coordinates are measured in meters. Derive the Lagrange position functions for the field particle that was located at the point $(x, y)=(1,1)$ at the instant $t=0$.
i) Obtain an algebraic expression for the pathline followed by this particle.
ii) Plot the pathline and compare with the streamlines through the same point at the instants $t=0,1$ and 2 s
c) Derive the formula for convective derivative of the density.
d) For the flow in $x y$ plane, the y component of velocity is given by

$$
y=y^{2}-2 x+2 y
$$

Determine a possible x component for steady, incompressible flow.

QUESTION B2 [20 Marks]

a) Prove $\bar{V}=\nabla \psi \times \bar{k}$ in the usual notations.
b) Consider the flow field given by

$$
\psi=9+6 x-4 y+7 x y .
$$

i) Show that flow is irrotational.
ii) Determine the velocity potential ϕ for this flow.
iii) Show that lines of constant ψ and ϕ are orthogonal.
(c) The stream function for a certain incompressible flow field is given by the expression

$$
\psi(r, \theta)=-U r \sin \theta+\frac{q \theta}{2 \pi} .
$$

i) Obtain an expression for the velocity field.
ii) Find the stagnation point, and
iii) Show that $\psi=0$ there.

QUESTION B3 [20 Marks]
a) Prove that the pressure at a point of fluid is the same in all directions.
b) Derive relation of pressure to body forces.
c) State and prove Archimedes' theorem.
d) Define the Newtonian fluid.

QUESTION B4 [20 Marks]

a) The velocity distribution in two-dimensions flow is given by

$$
\bar{V}=(A x+B y) i-A y j, \quad \text { where } A=1 s^{-1}, B=2 s^{-1}
$$

and the coordinates are measured in meters.
i) Is it a possible incompressible flow?
ii) Find the acceleration of fluid particle at point $(x, y)=(1,2)$.
iii) Find the pressure gradient at the same point, if $\bar{g}=-g \bar{j}$ and the fluid is water.
iv) Find the pressure distribution along the x-axis if $p(0,0)=100 p a$.
b) A tank partly filled with water is subject to a constant linear horizontal acceleration n_{x}. Using the Euler equation, find the shape of the free surface.

QUESTION B5 [20 Marks]

a) Consider steady, incompressible viscous flow in a cylindrical pipe of radius a (Poiseulle How). Neglect body forces. Pressure gradient is G. Pressure at $z=0$ is P_{0}. Put $\bar{V}=u(\gamma) \bar{k}$ and apply Navier-Stoke's equations to show that
i) $P=P(z)=P_{0}-G_{z}$,
ii) $u(r)=\frac{G}{4 \mu}\left(a^{2}-r^{2}\right)$.
b) Air flows steadily through a horizontal nozzle, discharging to the atmosphere. At the nozaie inlet, the area is $0.1 \mathrm{~m}^{2}$. At the nozzle exit, the area is $0.02 \mathrm{~m}^{2}$. The flow is incompressible, and frictional effects are negligible. Air density is $1.23 \mathrm{~kg} / \mathrm{m}^{3}$. Apply Bernoulli's equation to determine the gage pressure required at the nozzle inlet to produce an outlet speed of $50 \mathrm{~m} / \mathrm{s}$.

USEFUL FORMULAE

The gradient of a function $\psi(r, \theta, z)$ in cylindrical coordinates is

$$
\nabla \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\theta}+\frac{\partial \psi}{\partial z} \hat{k}
$$

The divergence and curl of the vector field

$$
\underline{v}=v_{r} \hat{r}+v_{\theta} \hat{\theta}+v_{z} \hat{k}
$$

in cylindrical coordinates are

$$
\nabla \cdot \underline{v}=\frac{1}{r}\left\{\frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(r v_{z}\right)\right\}
$$

and

$$
\nabla \times \underline{v}=\frac{1}{r} \operatorname{det}\left[\begin{array}{ccc}
\hat{r} & r \hat{\theta} & \hat{k} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
v_{r} & r v_{\theta} & v_{z}
\end{array}\right]
$$

The divergence of a vector

$$
\underline{v}=v_{r} \hat{r}+v_{\lambda} \hat{\lambda}+v_{\theta} \hat{\theta}
$$

in spherical coordinates

$$
\nabla \cdot \underline{y}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial v_{\lambda}}{\partial \lambda}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta v_{\theta}\right)}{\partial \theta}
$$

The convective derivative and Laplacian in cylindrical coordinates are

$$
\begin{aligned}
& \frac{D}{D t}=\frac{\partial}{\partial t}+v_{r} \frac{\partial}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial}{\partial \theta}+v_{z} \frac{\partial}{\partial z} \\
& \nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

Identities

$$
\begin{aligned}
\underline{v} \cdot \nabla \underline{v} & =\nabla\left(\frac{v^{2}}{2}\right)-\underline{v} \times \underline{\omega} \\
\nabla \times(\nabla \times \underline{a}) & =\nabla \nabla \cdot \underline{a}-\nabla^{2} \underline{a}
\end{aligned}
$$

