University of Swaziland

Supplementary Examination, 2017/2018

B.Sc. IV, BASS IV, B.Ed IV

Title of Paper : Fluid Dynamics

Course Number : M455
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is wortl 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: -None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. Give essential features of
(a) liquids,
(b) gases.

A2. Describe the Euler method of treating motion of continuum medium.
A3. A tornado can be represented in polar coordinates by the velocity field

$$
\bar{V}=-\frac{a}{r} \bar{e}_{r}+\frac{b}{r} \overline{e_{\theta}} .
$$

Find the stream lines.
A4. Does the following set of velocity components $u=x t+2 y, v=x t^{2}-y t$, represent possible two-dimensional
(a) incompressible flow,
(b) irrotational flow?

A5. Explain the term $\tau_{z y}$.
A6. On the water surface the pressure is 1 atm (101.3 kpa). How deep one can dive to get a maximum pressure of 2 atm ?

A7. (a) Define Reynolds number,
(b) Define similar flows.
(c) How the notion of the similar flows is used in experiments?

A8. Consider steady, incompressible, inviscid, potential flow. Given

$$
\begin{equation*}
\bar{V} \times \bar{\omega}=\nabla\left(\frac{V^{2}}{2}+\phi+\frac{p}{\rho}\right), \tag{5}
\end{equation*}
$$

in the usual notations. Derive Bernoullis equation.

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Define a continuum model on example of air density
(b) Parametric equations for the position of a particle in a flow field are given as $x_{p}=c_{1} e^{u t}$ and $y_{p}=c_{2} e^{-b t}$.
(i) Find the equation of the pathline for a particle located at $(x, y)=(1,2)$ at $t=0$.
(ii) Show that for this flow field $\bar{V}=a x i-b y j$.
(iii) Compare the pathline with streamline through the same point.
(c) Derive the formula for mass conservation (continuity equation).
(d) The x component of velocity in steady, incompressible flow field in the $x y$ plane is $u=\frac{A}{x}$. Find the simplest y component of velocity for this flow field.

QUESTION B2 [20 Marks]

B2. (a) Prove $\bar{V}=\nabla \times \psi \bar{k}$ in the usual notations
(b) Consider the flow field given by $\psi=-2 x y+x+3$.
(i) Show that the flow is irrotational.
(ii) Determine the velocity potential for this flow.
(iii) Show that lines of constant ψ and ϕ are orthogonal.
(c) Incompressible flow around a circular cylinder of radius a is represented by the stream function

$$
\psi(r, \theta)=-U r \sin \theta+\frac{U a^{2} \sin \theta}{r}
$$

where U represents the free stream velocity (or velocity of infinity).
(i) Obtain an expression for the velocity field.
(ii) Find v_{r} along the circle $r=a$,
(iii) Locate the points along $r=a$, where $|\bar{V}|=U$

QUESTION B3 [20 Marks]

B3. (a) Consider a fluid at rest in the field of gravity. Derive equilibrium equations.
(b) Consider liquid uniformly rotating with angular velocity ω in the field of gravity.
(i) Construct equilibrium equations.
(ii) Find the equation of the upper surface of the liquid.
(c) State and prove Archimede's theorem.

QUESTION B4 [20 Marks]

B4. (a) A velocity field in a fluid with density of $1500 \mathrm{~kg} / \mathrm{m}^{3}$ is given by

$$
\bar{V}=(A x-B y) t \bar{i}-(A y+B x) t \bar{j}
$$

where $A=1 s^{-2}, \quad B=2 s^{-2}$, and x and y are in meters and t is seconds. Body and viscous forces are negligible.
(i) Is it a possible incompressible flow?
(ii) Find the acceleration of a fluid particle at point $(x, y)=(1,2)$ at $t=1$ sec.
(iii) Find the pressure gradient at the same point and same time.
(iv) Find the pressure distribution along the x -axis if $p(0,0)=p_{0}$.
(b) (i) Write constitutive (essential) relations for Newtonian fluid.
(ii) Define a kinematic viscosity.

QUESTION B5 [20 Marks]

B5. (a) Consider a cylinder of radius a rotating with angular velocity ω in a viscous incompressible fluid. Put $\bar{V}=u(r) \overline{e_{0}}$ and apply Novier-Stoke's equations to show that

$$
u=\left\{\begin{array}{ccc}
\omega r & \text { if } & r \leq a \tag{10}\\
\frac{\omega a^{2}}{r} & \text { if } & r \geq a .
\end{array}\right.
$$

(b) Water flows in circular pipe. At one section the diameter is 0.3 m , the static pressure is 260 kpa (gage), the velocity is $3 \mathrm{~m} / \mathrm{s}$, and the elevation is 10 m above ground level. At a section downstream at ground level, the pipe diameter is 0.15 m . Find the gage pressure at the downstream section, if friction effects may be neglected.

USEFUL FORMULAE

The gradient of a function $\psi(r, \theta, z)$ in cylindrical coordinates is

$$
\nabla \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\theta}+\frac{\partial \psi}{\partial z} \hat{k}
$$

The divergence and curl of the vector field

$$
\underline{v}=v_{r} \hat{r}+v_{\theta} \hat{\theta}+v_{z} \hat{k}
$$

in cylindrical coordinates are

$$
\nabla \cdot \underline{u}=\frac{1}{r}\left\{\frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(r v_{z}\right)\right\}
$$

and

$$
\nabla \times \underline{v}=\frac{1}{r} \operatorname{det}\left[\begin{array}{ccc}
\hat{r} & r \hat{\theta} & \hat{k} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
v_{r} & r v_{\theta} & v_{z}
\end{array}\right]
$$

The divergence of a vector

$$
\underline{v}=v_{r} \hat{r}+v_{\lambda} \hat{\lambda}+v_{\theta} \hat{\theta}
$$

in spherical coordinates

$$
\nabla \cdot \underline{v}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial v_{\lambda}}{\partial \lambda}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta v_{\theta}\right)}{\partial \theta}
$$

The convective derivative and Laplacian in cylindrical coordinates are

$$
\begin{aligned}
& \frac{D}{D t}=\frac{\partial}{\partial t}+v_{r} \frac{\partial}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial}{\partial \theta}+v_{z} \frac{\partial}{\partial z} \\
& \nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

Identities

$$
\begin{aligned}
\underline{v} \cdot \nabla \underline{v} & =\nabla\left(\frac{v^{2}}{2}\right)-\underline{v} \times \underline{\omega} \\
\nabla \times(\nabla \times \underline{a}) & =\nabla \nabla \cdot \underline{a}-\nabla^{2} \underline{a}
\end{aligned}
$$

