University of Swaziland

Final Examination, December 2017

B.A.S.S I

Title of Paper : Elementary Quantitative Techniques I
Course Number : MAT101
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Show all your working.
3. Start each question on a fresh page.
4. Non programmable calculators may be used (unless otherwise stated).
5. Leave all non exact answers correct to 3 decimal places unless told otherwise.
6. A formula sheet is provided on the last page.
7. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A

Answer ALL questions from Section A.
A1. (a) Simplify:
i. $\left(a^{3} b^{3}\right)\left(a^{-2} b^{3}\right)$.
[2] ii. $\frac{b^{2}-4 b}{b^{2}-10 b+24}$.
iii. $\frac{1}{x+3}+\frac{1}{x-2}$.
[3] iv. $\log x+\log (x+5)$
[3]
(b) Evaluate
i. $\log _{b} b^{3}$.
[2] ii. $\log _{2} 16$.
iii. $16 C_{7}$.
[2] iv. $\ln 457$.
[2]
(c) Factorise completely $4 n^{2}+12 n+9$.
(d) Evaluate $\left|\begin{array}{ccc}4 & -4 & 2 \\ 0 & 9 & 3 \\ 5 & 0 & 3\end{array}\right|$.
(e) Solve

$$
\begin{aligned}
& 3 m+2 n=4 \\
& 2 m+3 n=11
\end{aligned}
$$

(f) Find the equation of the line passing through $(4,0)$ and parallel to the line $y=3 x-5$.
(g) For the progression $10,2,-6, \ldots$, find
i. the formula for the nth term.
ii. T_{35}.

Answer any THREE questions from section B.
B2. A parent sets up a fund for their son by making monthly deposits. If he deposits $E 100, E 105, E 110$ at the end of the first, second, and third months, respectively, (the amounts increasing by E5 every month), find
(a) the instalment after 1 year.
(b) the time when the instalment will reach E500.
(c) the total deposited after 2 years.

B3. Use Cramer's rule to solve the following linear system of equations.

$$
\begin{aligned}
x+2 y+z & =3 \\
2 x+4 y+z & =3 \\
3 x+7 y & =2
\end{aligned}
$$

B4. (a) Given the expression $(2 x+y)^{18}$, Find
i. the first 4 terms.
ii. the 14th term.
iii. the middle term.
(b) Solve $\log _{3}(x-3)+\log _{3}(x+3)=3$.

B5. (a) Find the equation of the line parallel to the line $6 x-2 y=1$ and passes through the point $(3,4)$.
(b) Find the amount at the end of 5 years on an original principal of $E 5000$ at 6% if the interest is
i. simple interest.
ii. compounded semiannually.
iii. compounded continuously.

B6. (a) A sum of $E 16,000$ is invested for 5 years at 8% compound interest which is paid contin- uously. The total value is subsequently given by

$$
V(t)=16000 e^{0.08 t}
$$

where t is the number of years after the initial investment. Find
i. the total amount after 5 years.
ii. how long it takes for the total amount to be double the initial investment?
(b) Solve
i. $7^{x-3}=1$.
ii. $e^{1-x}=\frac{1}{2}$.
iii. $\ln (4 x+17)=0$.

Formula Sheet

Arithmetic Progressions:

$$
T_{n}=T_{1}+(n-1) d, \quad S_{n}=\frac{n}{2}\left[T_{1}+T_{n}\right], \quad S_{n}=\frac{n}{2}\left[2 T_{1}+(n-1) d\right] .
$$

Geometric Progressions:

$$
T_{n}=T_{1} r^{n-1}, \quad S_{n}=\frac{T_{1}\left(1-r^{n}\right)}{1-r}
$$

Binomial Theorem:

$$
\begin{aligned}
& (a+b)^{n}=a^{n}+n C_{1} a^{n-1} b+n C_{2} a^{n-2} b^{2}+n C_{3} a^{n-3} b^{3}+\cdots+b^{n} . \\
& r \text { th term of }(a+b)^{n}=n C_{r-1} a^{n-r+1} b^{r-1} .
\end{aligned}
$$

Matrices:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

logarithms and Exponential Functions:

$$
\begin{aligned}
& \log _{b} x=y \Leftrightarrow x=b^{y} . \\
& \log _{b}(A B)=\log _{b} A+\log _{b} B . \\
& \log _{b}\left(\frac{A}{B}\right)=\log _{b} A-\log _{b} B . \\
& \log _{b} A^{n}=n \log _{b} A .
\end{aligned}
$$

The Quadratic Formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Simple Interest:

$$
A=P(1+r n)
$$

Compound Interest:

$$
A=P(1+r)^{n}, \quad A=P(1+r / s)^{n s}
$$

Continuous Compound Interest:

$$
A=P e^{r n}
$$

