University of Swaziland

Supplementary Examination, July 2018

B.A.S.S I

Title of Paper : Elementary Quantitative Techniques I
Course Number : MAT101
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Show all your working.
3. Start each question on a fresh page.
4. Non programmable calculators may be used (unless otherwise stated).
5. Leave all non exact answers correct to 3 decimal places unless told otherwise.
6. A formula sheet is provided on the last page.
7. Special requirements: None.

This paper should not be opened until permission has been given by the INVIGILATOR.

SECTION A

Answer ALL questions from section A.
A1. (a) Simplify:
i. $\left(a b^{-2}\right)\left(a^{-2} b\right)^{2}$.
[2] ii. $\frac{2 x-4}{x^{2}+x-6}$.
iii. $\frac{1}{x}+\frac{2}{x-1}$.
[3] iv. $\ln x^{2}+\ln (2 x)$
[3]
(b) Evaluate
i. $\log _{7} 1$.
$[2] \quad$ ii. $\left|\begin{array}{cc}3 & -4 \\ 2 & 5\end{array}\right|$.
iii. $15 C_{10}$.
[2] iv. $\log _{10} 0.01$.
[2]
[2]
(c) Factorise completely $3 x^{2}+4 x-4$.
(d) Evaluate $\left|\begin{array}{ccc}10 & 0 & -2 \\ 3 & 0 & 5 \\ 4 & -1 & 7\end{array}\right|$.
(e) Solve

$$
\begin{aligned}
& 2 a+3 p=9 \\
& 4 a+p=13
\end{aligned}
$$

(f) Find the equation of the line passing through $(0,1)$ and parallel to the line $3 x+y=3$.
(g) For the Geometric progression $3,-12,48, \ldots$, find
i. the formula for the nth term.
ii. T_{10}.

SECTION B

Answer any THREE questions from section B.

B2. Consider the AP $40,34,28, \ldots$,
(a) Write down the next two terms.
(b) Find a formula for the nth term.
(c) Use the formula in b . to find the $51^{\text {st }}$ term.
(d) Find the sum of the first 30 terms.

B3. Use Cramer's rule to solve the following linear system of equations.

$$
\begin{array}{r}
2 x+y-3 z=0 \\
x-2 y+3 z=4 \\
x-2 y+z=0
\end{array}
$$

B4. Given the following expression $\left(x+\frac{1}{x}\right)^{20}$, find
(a) the first 4 terms.
(b) the 16 th term .
(c) the middle term.

B5. (a) Find the equation of the line parallel to the line $6 x-2 y=1$ and passes through the point $(3,4)$.
(b) Find the amount at the end of 5 years on an original principal of $E 5000$ at 6% if the interest is
i. simple interest. [4]
ii. compounded semiannually.
iii. compounded continuously.

B6. Solve
(a) $\ln (5 x-9)=0$
(b) $\log _{2}(x+2)=2$
(c) $5^{x+2}=625$
(d) $e^{x-1}=110$

Formula Sheet

Arithmetic Progressions:

$$
T_{n}=T_{1}+(n-1) d, \quad S_{n}=\frac{n}{2}\left[T_{1}+T_{n}\right], \quad S_{n}=\frac{n}{2}\left[2 T_{1}+(n-1) d\right] .
$$

Geometric Progressions:

$$
T_{n}=T_{1} r^{n-1}, \quad S_{n}=\frac{T_{1}\left(1-r^{n}\right)}{1-r}
$$

Binomial Theorem:

$$
\begin{aligned}
& (a+b)^{n}=a^{n}+n C_{1} a^{n-1} b+n C_{2} a^{n-2} b^{2}+n C_{3} a^{n-3} b^{3}+\cdots+b^{n} . \\
& r \text { th term of }(a+b)^{n}=n C_{r-1} a^{n-r+1} b^{r-1} .
\end{aligned}
$$

Matrices:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

logarithms and Exponential Functions:

$$
\begin{aligned}
& \log _{b} x=y \Leftrightarrow x=b^{y} \\
& \log _{b}(A B)=\log _{b} A+\log _{b} B . \\
& \log _{b}\left(\frac{A}{B}\right)=\log _{b} A-\log _{b} B . \\
& \log _{b} A^{n}=n \log _{b} A .
\end{aligned}
$$

The Quadratic Formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Simple Interest:

$$
A=P(1+r n)
$$

Compound Interest:

$$
A=P(1+r)^{n}, \quad A=P(1+r / s)^{n s}
$$

Continuous Compound Interest:

$$
A=P e^{r n}
$$

