University of Swaziland

45 10 ¹⁰ 1

Supplementary Examination, July 2018

B.A.S.S I

Title of Paper : Elementary Quantitative Techniques I

Course Number : MAT101

<u>Time Allowed</u> : Three (3) Hours

Instructions

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Show all your working.
- 3. Start each question on a fresh page.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. Leave all non exact answers correct to 3 decimal places unless told otherwise.
- 6. A formula sheet is provided on the last page.
- 7. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A

Answer ALL questions from section A.

A1. (a) Simplify: i. $(ab^{-2})(a^{-2}b)^2$. [2] ii. $\frac{2x-4}{x^2+x-6}$. [3]

iii.
$$\frac{1}{x} + \frac{2}{x-1}$$
. [3] iv. $\ln x^2 + \ln(2x)$ [2]

- (b) Evaluate
 - i. $\log_7 1$. [2] ii. $\begin{vmatrix} 3 & -4 \\ 2 & 5 \end{vmatrix}$. [2]
 - iii. $15C_{10}$. [2] iv. $\log_{10} 0.01$. [2]

(c) Factorise completely
$$3x^2 + 4x - 4$$
. [4]

(d) Evaluate
$$\begin{vmatrix} 10 & 0 & -2 \\ 3 & 0 & 5 \\ 4 & -1 & 7 \end{vmatrix}$$
. [5]

(e) Solve

$$2a + 3p = 9,$$

$$4a + p = 13.$$

[5]

and the second s

(f) Find the equation of the line passing through (0, 1) and parallel to the line 3x + y = 3.
(g) For the Geometric progression 3, -12, 48, ..., find

i.	the formula for the n th term.	[3]

ii. T_{10} . [2]

SECTION B

Answer any THREE questions from section B.	aris Tangan	₩8 π. ⁹ 44
. Consider the AP $40, 34, 28,,$		
(a) Write down the next two terms.		[4]
(b) Find a formula for the n th term.		[6]
(c) Use the formula in b. to find the 51^{st} term.		[4]
(d) Find the sum of the first 30 terms.		[6]

B3. Use Cramer's rule to solve the following linear system of equations.

x	_	$egin{array}{c} y \\ 2y \\ 2y \end{array}$	+	3z	==	4,

B4. Given the following expression $\left(x+\frac{1}{x}\right)^{20}$, find

B2.

(a) the first 4 terms.	[8]
(b) the 16th term .	[6]

- (c) the middle term. [6]

- **B5.** (a) Find the equation of the line parallel to the line 6x 2y = 1 and passes through the point (3, 4).
 - (b) Find the amount at the end of 5 years on an original principal of E5000 at 6% if the interest is

i. simple interest.	[4]	
ii. compounded semiannually.	[5]	
iii. compounded continuously.	[5]	

B6. Solve

- (a) $\ln(5x 9) = 0$ [5]
- (b) $\log_2(x+2) = 2$ [5]

(c)
$$5^{x+2} = 625$$
 [5]

(d) $e^{x-1} = 110$ [5]

END OF EXAMINATION

Formula Sheet

and and the second s

Arithmetic Progressions:

$$T_n = T_1 + (n-1)d, \quad S_n = \frac{n}{2}[T_1 + T_n], \quad S_n = \frac{n}{2}[2T_1 + (n-1)d].$$

Geometric Progressions:

$$T_n = T_1 r^{n-1}, \quad S_n = \frac{T_1(1-r^n)}{1-r}.$$

Binomial Theorem:

$$(a+b)^n = a^n + nC_1a^{n-1}b + nC_2a^{n-2}b^2 + nC_3a^{n-3}b^3 + \dots + b^n.$$

rth term of $(a+b)^n = nC_{r-1}a^{n-r+1}b^{r-1}.$

Matrices:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

logarithms and Exponential Functions:

$$\log_b x = y \Leftrightarrow x = b^y.$$

$$\log_b(AB) = \log_b A + \log_b B.$$

$$\log_b\left(\frac{A}{B}\right) = \log_b A - \log_b B.$$

$$\log_b A^n = n \log_b A.$$

The Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Simple Interest:

$$A = P(1 + rn)$$

Compound Interest:

$$A = P(1+r)^n, \quad A = P(1+r/s)^{ns}$$

Continuous Compound Interest:

$$A = Pe^{rn}$$

 $\mathbf{5}$