UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2017/2018 BASS I

2. Show all your working.

Special Requirements: NONE
This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

SECTION A

ANSWER ALL QUESTIONS

QUESTION A1

(a) Use the limit definition to find $f^{\prime}(x)$
(i) $\quad f(x)=x^{2}+1$ (5 marks)
(ii) $f(x)=\sqrt{2 x+1}$
(5 marks)
(b) Find the derivatives of the following:
(i) $y=x^{2} \ln x$ (5 marks)
(ii) $y=\frac{\sin 2 x}{1+4 x^{2}}$

QUESTION A2

Differentiate the following:
(i) $y=3 x^{2}-10 x^{\frac{-1}{5}}+4$
(5 marks)
(ii) $y=\left(7 x^{2}+3 x-2\right)\left(x^{4}+1\right)$ (5 marks)
(iii) $y=3 \sec \left(3 x^{2}+5\right)$ (5 marks)
(iv) $y=x^{\sin x}$ (5 marks)

SECTION B

ANSWER ANY THREE QUESTIONS

QUESTION B3

(a) A company manufactures and sells x radios per week. If the weekly cost and pricedemand functions are given by

$$
C(x)=60000+72 x, \quad p(x)=\frac{700}{3}-\frac{x}{36}
$$

Find the following, for each week:
(i) the cost of producing the $51^{s t}$ radio (2 marks)
(ii) the number of radios that maximise profit
(iii) the maximum profit
(b) Sketch the graph of $y=2 x^{3}-21 x+60 x+10$, showing all relative extrema intervals where the curve is increasing/decreasing.
(10 marks)

QUESTION B4

(a) Find the first four (4) derivatives of the function $y=\ln \sqrt{2 x+1} . \quad$ (8 marks)
(b) From a thin piece of cardboard that is 12 cm by 12 cm , square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume?

QUESTION B5

Evaluate the following integrals:
(a) $\int\left(2 x-3 x^{2}+\frac{4}{x^{3}}\right) d x$ (5 marks)
(b) $\int x^{2} e^{x} d x$
(c) $\int\left(\frac{5 x-7}{x^{2}-2 x-3}\right) d x$
(d) $\quad \int x^{2}\left(2 x^{3}+1\right)^{4} d x$
(5 marks)

QUESTION B6

(a) Find the area bounded by the curves $y=x^{2}-7 x$ and $y=9 x-x^{2} \quad$ (10 marks)
(b) Use integration by parts to evaluate

$$
\begin{equation*}
\int x^{2} \cos 3 x d x \tag{10marks}
\end{equation*}
$$

OUESTION B7

(a) A computer firm is marketing a view computer model. It determines that in order to sell x computers, the price per computer must be $p=280-0.4 x$. It also determines that the total cost of producing x computers is given by $C(x)=5000-0.6 x^{2}$. Find the
(i) marginal average cost function
(ii) marginal average profit function.
(b) Evaluate the following definite integrals:
(i) $\int_{2}^{4} \frac{x}{2+5 x^{2}} d x$
(ii) $\int_{1 / 2}^{e / 2} \frac{\ln (2 x)}{x} d x$

