UNIVERSITY OF SWAZILAND

Main Examination, 2017/2018

BASS I, B.Ed I, B.Comm I

- Title of Paper : Algebra, Trigonometry and Analytic Geometry
- Course Number : MAT 107/MAT 121/MS 101
- **Time Allowed** : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- Section B consists of FIVE questions, each worth 20%. Answer ANY THREE
 (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate whether you are full time or part time student and indicate your program on your answer booklet.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

a) The polynomial $Ax^3 + 3x^2 + Bx - 12$ has (x+3) as a factor. When the polynomial is divided by (x+1) the remainder is -6. Find the values of A and B. [5]

<u>,</u>`

[5]

[5]

[5]

- b) Solve the exponential equation $5^{7x} = e^{6x+6}$
- c) Prove that $(\sin x + \cos x)(\tan x + \cot x) = \sec x + \csc x.$ [5]
- d) Find the sixth term in the expansion of $(3x 2y)^8$. [3]
- e) Using the method of mathematical induction, prove that

$$4 + 8 + 12 + \dots + 4n = 2n(n+1)$$

for all positive values of n.

- f) The geometric mean of p and 28 is 14. Find p. [5]
- g) Solve the following linear system of equations using Crammer's rule.

$$7x - 2y = -1$$
$$2x + 7y = 30$$

- h) Find the equation of a straight line passing through the point (-4, 8) and perpendicular to 12x 6y = 24. [5]
- i) Without using a calculator, express $2(\cos(30^\circ) + i\sin(30^\circ))$ in the cartesian form a + bi. [2]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

a) Use synthetic division to find the quotient and remainder when

$$P(x) = x^3 + 6x^2 + 5x - 12$$

is divided by D(x) = x + 4.

b) Find all the roots of the equation $x^3 - x^2 - 10x - 8 = 0$.

QUESTION B3 [20 Marks]

a) Solve the logarithmic equation

$$\log_2(x-3) + \log_2(x) = 2.$$

b) E13750 is invested at 2.514% compounded monthly. After how many years will the investment exceed E20000? [12]

QUESTION B4 [20 Marks]

- a) i) Find the first three terms of an arithmetic progression whose 9th term is 16 and 40th term is 47.
 - ii) The first term of a geometric progression is 2 and the common ratio is 3. Find the sum of the first four terms. [6]
- b) Find the first three terms of the expansion of $(x^2 y^3)^6$. [8]

[8]

[12]

[8]

QUESTION B5 [20 Marks]

a) Prove by mathematical induction that the following formula [8]

$$1(2) + 2(3) + 3(4) + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

is valid for all positive integers.

b) Solve the following linear system of equations using Crammer's rule. [12]

$$-x + 4y - z = -3$$

$$-3x + 2y + 2z = -9$$

$$5x + 2y - 5z = 13$$

QUESTION B6 [20 Marks]

) If $x = a\cos(\theta)$ and $y = b\sin(\theta)$, prove the	at $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$	[5]
--	---	-----

- b) Find the term that involves x^5 in the expansion of $\left(x + \frac{1}{2x}\right)^9$. [5]
- c) Find the center and radius of the circle $2x^2 + 2y^2 = 4y + 96$. [5]

[5]

d) Express $\frac{(1+i)(2+3i)}{1-i}$ in the form a + ib.

END OF EXAMINATION PAPER