# University of Swaziland 



Main Examination, 2017/2018

## BASS I , BCom I, BEd I, BCom I(IDE), BEd I(IDE)

Title of Paper : Calculus for Business Studies
Course Number : MAT108/MS102
Time Allowed : Three (3) Hours

## Instructions

1. This paper consists of SIX (6) questions in TWO sections.
2. Section A is COMPULSORY and is worth $40 \%$. Answer ALL questions in this section.
3. Section B consists of FIVE questions, each worth $20 \%$. Answer ANY THREE (3) questions in this section.
4. Show all your working.
5. Start each new major question ( $\mathrm{A} 1, \mathrm{~B} 2-\mathrm{B} 6$ ) on a new page and clearly indicate the question number at the top of the page.
6. Indicate your program next to your student ID and indicate whether you are full time student or part time student.

## Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

## SECTION A [40 Marks]: ANSWER ALL QUESTIONS

## QUESTION A1 [40 Marks]

i) Evaluate the following limits
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-x}{x-1}$.
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x+1}{1-3 x^{2}}$.
(c) $\lim _{x \rightarrow 0} \frac{x^{3}-2 x^{2}}{x^{4}+3 x^{2}}$.
ii) Consider the function $f(x)=\frac{x^{2}-1}{x+1}$. Find the point of discontinuity, hence classify the type of discontinuity.
iii) Consider the function $y=2 x^{3}+3 x+1$.
(a) Find the first derivative $y^{\prime}(x)$.
(b) Hence find the equation of the tangent line to the curve at $x=1$.
v) Find the derivatives of the following functions
(a) $y=\left(x^{2}+1\right) e^{x}$
(b) $y=\frac{\ln (x)}{x^{2}}$
(c) $y=\left(4 x^{3}-7\right)^{9}$
(c) $y=\left(4 x^{3}-7\right)$
v) Integrate the following functions
(a) $\int\left(\frac{7}{x}+3 x+2 e^{x}+4\right) d x$
(b) $\int 2 x\left(x^{2}-2\right)^{8} d x$
(c) $\int_{0}^{90^{\circ}} x \cos (3 x) d x$

## SECTION B: ANSWER ANY THREE QUESTIONS

## QUESTION B2 [20 Marks]

a) Use the limit definition of the derivative to find the derivative, $f^{\prime}(x)$ of the function

$$
f(x)=4 x^{2}-8 x+12
$$

b) Consider the function defined by $f(x)=\left\{\begin{array}{ll}2 x, & \text { if } x \leq 5 \\ 3 x+5, & \text { if } x>5\end{array}\right.$.
i) Evaluate $f(5)$.
ii) Find $\lim _{x \rightarrow 5^{-}} f(x)$ and $\lim _{x \rightarrow 5^{+}} f(x)$.
iii) Find $\lim _{x \rightarrow 5} f(x)$ if it exists.
iv) Is the function continuous at $x=5$ ? Explain.

## QUESTION B3 [20 Marks]

a) Use logarithmic differentiation to find the derivative, $y^{\prime}$ given

$$
\begin{equation*}
y=\left(x^{2}+1\right)^{\ln x} . \tag{5}
\end{equation*}
$$

b) Find $y^{\prime \prime \prime}$ given $y=e^{x^{2}}$.
c) The total profit (in Emalangeni) from the sale of $x$ watches is $P(x)=20 x-0.02 x^{2}-320$.
i) Find the average profit per watch if 40 watches are produced.
ii) Find the marginal average profit at a production level of 40 watches and interpret. [6]

## QUESTION B4 [20 Marks]

Consider the function $y=x^{3}-12 x+12$.
a) Find all critical values.
b) Find intervals of increase and decrease.
c) Find all possible inflection points.
d) Find the intervals where the curve is concave up and concave down.
e) Sketch the curve showing clearly, all points of inflection, relative maximum or minimum, $y$-intercepts and $x$-intercepts where applicable.

## QUESTION B5 [20 Marks]

a) A computer firm is marketing a new computer model. It determines that in order to sell $x$ computers, the price per computer must be $p=280-0.4 x$. It also determines that the total cost of producing $x$ computers is given by $C(x)=5000+0.6 x^{2}$.
i) Determine the revenue function $R(x)$.
ii) Determine the profit function $P(x)$.
iii) What price per computer must be charged in order to make maximum profit?
b) The rate of growth of the population $N(t)$ of a new city $t$ years after its incorporation is estimated to be

$$
\frac{d N}{d t}=400+600 \sqrt{t}
$$

If the population was 5000 at the time of incorporation, find the population 9 years later.

## QUESTION B6 [20 Marks]

a) Integrate the following functions;
i) $\int x e^{x} d x$.
ii) $\int \frac{x-1}{x(4 x+1)} d x$.
b) Consider the demand function $D(x)=300-6 x-x^{2}$ and the supply function $S(x)=x^{2}+4 x$
i) Determine the equilibrium price and equilibrium quantity.
ii) Find the consumer's surplus at the equilibrium price level.
iii) Find the producer's surplus at the equilibrium price level.

