University of Swaziland

Final Examination - December 2017

BSc I, BEng I, BEd I, BASS I

Title of Paper : Algebra, Trigonometry and Analytic Geometry
Course Number : MAT111
Time Allowed : Three (3) hours

Instructions:

1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 3 (out of 5) questions in Section B.
4. Show all your working.
5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A

Answer ALL Questions in this section

A. 1 a. Solve for x
i. $\ln (2 x-19)=0$
[2 marks]
ii. $7^{x+2}=700$ (correct 2 d.p.)
b. Evaluate

$$
\frac{5}{1+2 i}+\frac{10}{2-i}
$$

and leave your answer in the form $a+i b$.
c. Given that $\tan A=\sqrt{3}$ and $\cos A<0$, find the exact value of

$$
\sin A \tan A-\cos A .
$$

d. Find the value of

$$
\sum_{n=-10}^{100}(3 n-25) .
$$

e. Consider the equation of a circle

$$
x^{2}+y^{2}=8 x .
$$

i. Find the coordinates of the centre and the length of the radius [3 marks]
ii. Make a sketch of the circle.
[2 marks]
f. Given the matrices

$$
A=\left(\begin{array}{rrr}
2 & -1 & 1 \\
-3 & 0 & -2
\end{array}\right), \quad B=\left(\begin{array}{rrr}
-1 & 3 & -2 \\
2 & -1 & 1
\end{array}\right), \quad C=\left(\begin{array}{rr}
-1 & 2 \\
1 & -3
\end{array}\right),
$$

find

$$
A B^{T}+2 C
$$

g. Use synthetic division to find the quotient and remainder of

$$
\frac{x^{4}-6 x^{2}+13}{x+1}
$$

h. In the binomial expansion of

$$
\left(x^{2}-\frac{y^{3}}{x}\right)^{19}
$$

find
i. the first 3 terms
[5 marks]
ii. the 13th term

Section B

Answer ANY 3 Questions in this section

B. 1 a. For the binomial expansion of

$$
\left(\frac{1}{x}-2 \dot{x}^{2}\right)^{-2}
$$

in ascending powers of x, find
i. the first 3 terms [3 marks]
ii. the term involving x^{23}. [5 marks]
b. For the hyperbola defined by the equation

$$
x^{2}-4 y^{2}+6 x+16 y=11
$$

i. transform the equation into standard form [3 marks]
ii. find the coordinates of the centre, vertices and foci [3 marks]
iii. find the equations of the asymptotes [2 marks]
iv. find the eccentricity [1 mark]
v. make a sketch of the hyperbola [3 marks]
B. 2 a. Without using a calculator, find the exact value of
i. $\sin \left(\frac{29}{12} \pi\right)$
ii. $\left(\cos 525^{0}-\sin 525^{0}\right)^{2}$ [3 marks]
showing all your steps.
b. Given that $\sin \theta=\lambda>0$ while $\tan \theta<0$, find
i. $\tan ^{2} \theta+\sec ^{2} \theta$ [4 marks]
ii. $\cos 2 \theta$ [3 marks]
in terms of λ.
c. Prove each of the following trigonometric identities:
i. $\sec ^{4} \theta-2 \tan ^{2} \theta-\tan ^{4} \theta=1$ [3 marks]
ii. $\frac{\sin 3 \theta-\sin \theta}{\cos ^{2} \theta-\sin ^{2} \theta}=2 \sin \theta$ [4 marks]
 Find the
i. length of the side $A B$ [2 marks]
ii. the interior angle $A \hat{C} B$ [6 marks]
iii. the area of the triangle
b. Consider the complex number

$$
\Omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}
$$

i. Express Ω in polar form [3 marks]
ii. Use de Moivre's theorem to find Ω^{20}, leaving your answer in the form $a+i b$.
[3 marks]
iii. Find the square roots of Ω, leaving your answer in the form $a+i b$. [4 marks]

