University of Swaziland

Re-sit Examination - July 2018

BSc I, BEng I, BEd I, BASS I
Title of Paper : Algebra, Trigonometry \& Analytic Geometry
Course Number : MAT111
Time Allowed : Three (3) hours

Instructions:

1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 3 (out of 5) questions in Section B.
4. Show all your working.
5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A
 Answer ALL Questions in this section

A. 1 a. Find the value of
i. $\log _{\frac{1}{2}} 425$ (correct to 2 d.p.)
[2 marks]
ii. $\log _{b} b^{4}+\ln e^{4 m-3}$
[4 marks]
b. Evaluate

$$
(2+3 i)^{2}-(2-3 i)^{2} .
$$

and leave your answer in the form $a+i b$.
c. Expand and simplify

$$
(\cos A+\sin A)^{2}+(\cos A-\sin A)^{2}
$$

d. Find the value of

$$
\sum_{n=0}^{\infty} 32\left(\frac{3}{7}\right)^{n}
$$

e. Consider the equation of a parabola

$$
y^{2}+12 x=0
$$

i. Find the coordinates of the vertex and focus
ii. Make a sketch of the parabola.
f. Evaluate the determinant

$$
\left|\begin{array}{rrr}
2 & -1 & 1 \\
-3 & 0 & -2 \\
4 & 2 & 0
\end{array}\right| .
$$

g. Find the quotient and remainder of

$$
\frac{x^{4}-6 x^{3}+8 x+13}{x^{2}+1}
$$

h. In the binomial expansion of

$$
\left(x+\frac{2}{x}\right)^{24}
$$

find the first 3 terms.

Section B

Answer ANY 3 Questions in this section

B. 1 a. If the first 3 terms in the binomial expansion of $(1+k x)^{n}$ are $1-6 x+\frac{33}{2} x^{2}$, find the values of k and n.
b. Consider the triangle with vertices $A(4,9), B(7,-6)$ and $C(-4,1)$. Find
i. the equation of side $A B$, expressing it in general form [4 marks]
ii. the perpendicular distance from vertec C to side $A B$ [3 marks]
iii. the interior angle \hat{A}
iv. the perimeter of the triangle (correct to $2 \mathrm{~d} . \mathrm{p}$.)
v. the area of the triangle (correct to $2 \mathrm{~d} . \mathrm{p}$.) [3 marks]
B. 2 a. Simplify

$$
\sin \left(\frac{1}{6} \pi+A\right)+\cos \left(\frac{1}{3} \pi+A\right)
$$

b. Find the general solution of the equation

$$
2 \sin ^{2} \theta=1+\cos \theta
$$

expressing your answer in radians.
c. Prove each of the following trigonometric identities:
i. $\cos ^{4} \theta+\sin ^{2} \theta \cos ^{2} \theta-\cos ^{2} \theta=0$
ii. $\frac{\sin \theta+\sin 2 \theta}{1+\cos \theta+\cos 2 \theta}=\tan \theta$
[6 marks]
B. 3 a. Solve for x given
i. $\quad \ln (90 x+5)-\ln x=\ln (10 x)+\ln \left(\frac{10}{x}\right)$
ii. $\log _{2} x+\log _{2}(x-2)=\log _{b} b^{3}$.
[4 marks]
[4 marks]
b. Express as a single logarithm with unit coefficient, and simlify

$$
3+2 \log _{2}\left(2 a^{2}\right)-4 \log _{2}(2 a)
$$

c. On 01 January 2017, a sum of E10,000 is invested in an account that pays 6.7% p.a. compouded daily. Find
i. the total accrued on 30 June 2022 [3 marks]
ii. the date on which the total with be triple the initial sum. [5 marks]
B. 4 a. Find the quotient and remainder of

$$
\frac{y^{4}+x^{4}}{y+x}
$$

b. Factorise the polynomial

$$
\begin{equation*}
P(x)=6 x^{3}+19 x^{2}+2 x-3 \tag{5marks}
\end{equation*}
$$

b. Use mathematical induction to prove the formula

$$
\sum_{i=0}^{n} \rho^{i}=\frac{1-\rho^{n+1}}{1-\rho} . \quad \rho \neq 1, n \in \mathbb{Z}^{+}
$$

[10 marks]
B. 5 a. Given the vectors $\boldsymbol{A}=2 \hat{\boldsymbol{i}}-5 \hat{\boldsymbol{k}}$ and $\boldsymbol{B}=-8 \hat{\boldsymbol{j}}+2 \hat{\boldsymbol{k}}$, find
i. the angle made by the vectors A and B
ii. the cross product

$$
A \times B
$$

b. Find the exact value of

$$
(-1+2 i)^{14}
$$

c. Given that $2-i$ is a root of the polynomial

$$
P(z)=3 z^{3}-10 z^{2}+7 z+10
$$

find the other roots.

