# **University of Swaziland**



## **Re-sit Examination – July 2018**

### BSc I, BEng I, BEd I, BASS I

| Title of Paper | • | Algebra, Trigonometry & Analytic Geometry |
|----------------|---|-------------------------------------------|
| Course Number  | : | MAT111                                    |
| Time Allowed   | : | Three (3) hours                           |

#### Instructions:

- 1. This paper consists of 2 sections.
- 2. Answer ALL questions in Section A.
- 3. Answer ANY 3 (out of 5) questions in Section B.
- 4. Show all your working.
- 5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

#### Section A Answer ALL Questions in this section

| A.1 | a. Find the value of                                                    |           |
|-----|-------------------------------------------------------------------------|-----------|
|     | i. $\log_{\frac{1}{2}} 425$ (correct to 2 d.p.)                         | [2 marks] |
|     | ii. $\log_b^2 b^4 + \ln e^{4m-3}$                                       | [4 marks] |
|     | b. Evaluate                                                             |           |
|     | $(2+3i)^2 - (2-3i)^2.$                                                  |           |
|     | and leave your answer in the form $a + ib$ .                            | [5 marks] |
|     | c. Expand and simplify                                                  |           |
|     | $\left(\cos A + \sin A\right)^2 + \left(\cos A - \sin A\right)^2$ .     | [5 marks] |
|     | d. Find the value of                                                    |           |
|     | $\sum_{n=0}^{\infty} 32 \left(\frac{3}{7}\right)^n.$                    | [4 marks] |
|     | e. Consider the equation of a parabola                                  |           |
|     | $y^2 + 12x = 0.$                                                        |           |
|     | i. Find the coordinates of the vertex and focus                         | [3 marks] |
|     | ii. Make a sketch of the parabola.                                      | [2 marks] |
|     | f. Evaluate the determinant                                             |           |
|     | $\begin{vmatrix} 2 & -1 & 1 \\ -3 & 0 & -2 \\ 4 & 2 & 0 \end{vmatrix}.$ | [5 marks] |
|     | g. Find the quotient and remainder of                                   |           |
|     | $\frac{x^4 - 6x^3 + 8x + 13}{x^2 + 1}.$                                 | [5 marks] |

h. In the binomial expansion of

$$\left(x+\frac{2}{x}\right)^{24},$$

find the first 3 terms.

[5 marks]

5

### Section B

### Answer ANY 3 Questions in this section

| <b>B.1</b> | a. If the first 3 terms in the binomial expansion of $(1 + kx)^n$ are $1 - $ find the values of $k$ and $n$ . |           |  |  |
|------------|---------------------------------------------------------------------------------------------------------------|-----------|--|--|
|            | <b>b.</b> Consider the triangle with vertices $A(4,9)$ , $B(7,-6)$ and $C(-4,1)$ . Fin                        |           |  |  |
|            | i. the equation of side AB, expressing it in general form                                                     | [4 marks] |  |  |
|            | ii. the <i>perpendicular</i> distance from vertec $C$ to side $AB$                                            | [3 marks] |  |  |
|            | iii. the interior angle $\hat{A}$                                                                             |           |  |  |
|            | iv. the perimeter of the triangle (correct to 2 d.p.)                                                         | [3 marks] |  |  |
|            | v. the area of the triangle (correct to 2 d.p.)                                                               | [3 marks] |  |  |
| <b>B.2</b> | a. Simplify                                                                                                   |           |  |  |
|            | $\sin\left(\frac{1}{6}\pi + A\right) + \cos\left(\frac{1}{3}\pi + A\right).$                                  | [4 marks] |  |  |
|            | b. Find the general solution of the equation                                                                  |           |  |  |
|            | $2\sin^2\theta = 1 + \cos\theta,$                                                                             |           |  |  |
|            | expressing your answer in radians.                                                                            | [7 marks] |  |  |
|            | c. Prove each of the following trigonometric identities:                                                      |           |  |  |
|            | i. $\cos^4\theta + \sin^2\theta\cos^2\theta - \cos^2\theta = 0$                                               | [3 marks] |  |  |
|            | ii. $\frac{\sin\theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta$                          | [6 marks] |  |  |

#### **B.3** a. Solve for x given

i. 
$$\ln(90x+5) - \ln x = \ln(10x) + \ln\left(\frac{10}{x}\right)$$
 [4 marks]

ii.  $\log_2 x + \log_2(x-2) = \log_b b^3$ . [4 marks]

b. Express as a single logarithm with unit coefficient, and simlify

$$3 + 2\log_2(2a^2) - 4\log_2(2a)$$
. [4 marks]

- c. On 01 January 2017, a sum of E10,000 is invested in an account that pays 6.7% p.a. compouded daily. Find
  - i. the total accrued on 30 June 2022 [3 marks]
  - ii. the *date* on which the total with be triple the initial sum. [5 marks]
- **B.4** a. Find the quotient and remainder of

$$\frac{y^4 + x^4}{y + x}.$$
 [5 marks]

b. Factorise the polynomial

$$P(x) = 6x^3 + 19x^2 + 2x - 3.$$
 [5 marks]

b. Use mathematical induction to prove the formula

$$\sum_{i=0}^{n} \rho^{i} = \frac{1-\rho^{n+1}}{1-\rho}, \quad \rho \neq 1, \ n \in \mathbb{Z}^{+}.$$
 [10 marks]

**B.5** a. Given the vectors  $A = 2\hat{i} - 5\hat{k}$  and  $B = -8\hat{j} + 2\hat{k}$ , find

- i. the angle made by the vectors A and B [5 marks]
- ii. the cross product

 $\boldsymbol{A} \times \boldsymbol{B}$ . [5 marks]

b. Find the *exact* value of

$$(-1+2i)^{14}$$
. [4 marks]

c. Given that 2 - i is a root of the polynomial

$$P(z) = 3z^3 - 10z^2 + 7z + 10,$$

find the other roots.

#### END OF EXAMINATION

[6 marks]