UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2017/2018

B.Sc. II, B.Ed II

- Title of Paper : Mathematics for Scientists
- Course Number : M215/MAT215
- **Time Allowed** : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more, than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(5)

SECTION A [40 Marks]: Answer ALL Questions

A1.	Do t	he points (-1.1) , $(5, -3)$. and $(2, -1)$ lie on one line?	(4)
	A2.	Find all numbers m such that the vectors $\overline{a} = (1, 5m, 6m)$ and $\overline{b} = (-1, -1, m)$ are orthogonal.	(4)
	A3.	For the given function $f(x)$ find all numbers x_i in the open interval (a, b) for which mean value theorem is satisfied if	
		(a) $f(x) = x^2 + 1; (a, b) = (1, 2).$	
		(b) $f(x) = \frac{x-1}{x}; (a, b) = (1, 3).$	(4, 4)
	A4.	Find the third Taylor polynomial at $x_0 = 0$, for $f(x) = \frac{1}{x+1}$.	(4)
	A5.	Verify equality of mixed derivatives theorem for $f(x, y) = \sin(2x + 3y)$.	(4)
	A 6.	Minimize $f(x, y) = 2x^2 + y^2$, subject to constraints $x + 2y = 3$.	(5)
	A7.	Compute the volume under the graph of $z = 3x^2y + 1$ over the region $1 < x < 1$	
		2, 1 < y < 3.	(5)

A8. Solve the following initial value problem

$$\frac{dy}{dx} = 5y, \quad y(0) = y_0 \tag{6}$$

SECTION B: Answer Any THREE Questions

QUESTION B1 [20 Marks]

- B1. (a) Apply vector product to find
 - (i) a unit vector perpendicular to both
 - $\overline{a} = (2, -6, -3)$ and $\overline{b} = (4, 3, -1)$.

(ii) Area of the parallelogram spanned by the vectors $\overline{a} = (2, 3, -1)$ and $\overline{b} = (1, 2, -4)$. (5,5)

(b) Find the volume of parallelepiped spanned by the directed segments $\overline{OA}, \overline{OB}$, and \overline{OC} , if the coordinates of A, B, and C are (1, 1, 1), (0, 1, 1) and (1, 0, 4), respectively. (5)

(c) Given Rolle's theorem, state and prove mean value theorem.

QUESTION B2 [20 Marks]

B2. (a) Evaluate

(i)
$$\lim_{x \to 0} \frac{\sin x - e^x + 1}{x^2}$$
,

(ii)
$$\lim_{x \to \infty} \frac{e^x + i\pi x}{e^x + x}$$

(b) (i) State Taylor's theorem.

- (ii) Expand $\cos x$ in Taylor series for small |x|.
- (iii) Use quadratic approximation to compute $\cos x$ and estimate the error.
- (iv) In particular compute $\cos 0.2$ and estimate the error.

(3,3,3,3)

(6)

(4,4)

QUESTION B3 [20 Marks]

B3. (a) Apply the chain rule to evaluate f'_u and f'_v if $f(x, y) = x^2 + y^2$, $x = u \cos v$, $y = u \sin v$. (6)

(b) Find and classify all stationary points of $f(x, y) = 2x^2 + y^2 - 2x + y$. (4)

à

(c) A container manufacturer is designing a closed rectangular box, having square base and a volume $1024m^3$. The tops and bottoms must be stronger (to put on top of each other). Material for the top and bottom costs $4\frac{E}{m^2}$, for sides $2\frac{E}{m^2}$. Find dimensions which minimize total cost. (10)

QUESTION B4 [20 Marks]

- B4. (a) Compute the volume of solid under surface $z = \sqrt{xy}$ and over the set of points (x, y) with $x > 0, y > x^2, y < 2 x^2$. (7)
 - (b) Pass to polar coordinates to evaluate a double integral of $f(x,y) = \frac{y}{\sqrt{x^2+y^2}}$ over

the region R, which is in the upper half-plane bounded by the circle $x^2 + y^2 = 16$ and the x-axis. (6)

(c) Compute a triple integral of $x^2 + y^2 + z^2$ over a region *D*, where *D* is a cube 0 < x < 1, 0 < y < 1, 0 < z < 1. (7)

QUESTION B5 [20 Marks]

B5. (a) Solve the ODE with homogeneous coefficients

$$(x^2 - xy + y^2)dx - xydy = 0$$

(b) Test the ODE for exactness and solve it

$$(2t^3x - 5x^4)\frac{dx}{dt} = -3t^2x^2 - 1.$$
(7)

(c) Solve the initial value problem

$$2y'' + 5y' - 3y = 0, y(0) = 7, y'(0) = 0.$$
(7)

_____END OF EXAMINATION PAPER____

. .

96