UNIVERSITY OF SWAZILAND
 :

Final Examination, 2017/2018

B.Sc. II, B.Ed II

Title of Paper : Mathematics for Scientists
Course Number : M215/MAT215
Time Allowed : Three (3) Hours
\section*{Instructions}

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: Answer ALL Questions

A1. Do the points $(-1.1),(5,-3)$. and $(2,-1)$ lie on one line?
A2. Find all numbers m such that the vectors $\bar{a}=(1,5 \dot{m}, 6 m)$ and $\bar{b}=(-1,-1, m)$ are orthogonal.
A3. For the given function $f(x)$ find all numbers x_{i} in the open interval (a, b) for which mean value theorem is satisfied if
(a) $f(x)=x^{2}+1 ;(a, b)=(1,2)$.
(b) $f(x)=\frac{x-1}{x} ;(a, b)=(1,3)$.

A4. Find the third Taylor polynomial at $x_{0}=0$, for $f(x)=\frac{1}{x+1}$.
A5. Verify equality of mixed derivatives theorem for $f(x, y)=\sin (2 x+3 y)$.
A6. Minimize $f(x, y)=2 x^{2}+y^{2}$, subject to constraints $x+2 y=3$.
A7. Compute the volume under the graph of $z=3 x^{2} y+1$ over the region $1<x<$ $2,1<y<3$.
A8. Solve the following initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=5 y, \quad y(0)=y_{0} \tag{6}
\end{equation*}
$$

SECTION B: Answer Any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Apply vector product to find
(i) a unit vector perpendicular to both
$\bar{a}=(2,-6,-3)$ and $\bar{b}=(4,3,-1)$.
(ii) Area of the parallelogram spanned by the vectors $\bar{a}=(2,3,-1)$ and $\bar{b}=(1,2,-4)$.
(b) Find the volume of parallelepiped spanned by the directed segments $\overline{O A}, \overline{O B}$, and $\overline{O C}$, if the coordinates of A, B, and C are $(1,1,1),(0,1,1)$ and ($1,0,4$), respectively.
(c) Given Rolle's theorem, state and prove mean value theorem.

QUESTION B2 [20 Marks]

B2. (a) Evaluate
(i) $\lim _{x \rightarrow 0} \frac{\sin x-e^{x}+1}{x^{2}}$,
(ii) $\lim _{x \rightarrow \infty} \frac{e^{x}+\ln x}{e^{x}+x}$,
(b) (i) State Taylor's theorem.
(ii) Expand $\cos x$ in Taylor series for small $|x|$.
(iii) Use quadratic approximation to compute $\cos x$ and estimate the error.
(iv) In particular compute $\cos 0.2$ and estimate the error.

QUESTION B3 [20 Marks]

B3. (a) Apply the chain rule to evaluate f_{u}^{\prime} and f_{v}^{\prime} if $f(x, y)=x^{2}+y^{2}, x=u \cos v, y=$ $u \sin v$.
(b) Find and classify all stationary points of $f(x, y)=2 x^{2}+y^{2}-2 x+y$.
(c) A container manufacturer is designing a closed rectangular box, having square base and a volume $1024 \mathrm{~m}^{3}$. The tops and bottoms must be stronger (to put on top of each other). Material for the top and bottom costs $4 \frac{E}{m^{2}}$, for sides $2 \frac{E}{m^{2}}$. Find dimensions which minimize total cost.

QUESTION B4 [20 Marks]

B4. (a) Compute the volume of solid under surface $z=\sqrt{x} y$ and over the set of points (x, y) with $x>0, y>x^{2}, y<2-x^{2}$.
(b) Pass to polar coordinates to evaluate a double integral of $f(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}$ over the region R, which is in the upper half-plane bounded by the circle $x^{2}+y^{2}=16$ and the x -axis.
(c) Compute a triple integral of $x^{2}+y^{2}+z^{2}$ over a region D, where D is a cube $0<x<1,0<y<1,0<z<1$.

QUESTION B5 [20 Marks]

B5. (a) Solve the ODE with homogeneous coefficients

$$
\left(x^{2}-x y+y^{2}\right) d x-x y d y=0
$$

(b) Test the ODE for exactness and solve it

$$
\begin{equation*}
\left(2 t^{3} x-5 x^{4}\right) \frac{d x}{d t}=-3 t^{2} x^{2}-1 \tag{7}
\end{equation*}
$$

(c) Solve the initial value problem

$$
\begin{equation*}
2 y^{\prime \prime}+5 y^{\prime}-3 y=0, y(0)=7, y^{\prime}(0)=0 \tag{7}
\end{equation*}
$$

