UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2017/2018

B.Sc. II, BEd. II

- Title of Paper : Mathematics for Scientists
- Course Number : M215/MAT 215
- **Time Allowed** : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: Answer ALL Questions

A1. Do the points
$$\left(\frac{1}{2}, \frac{1}{2}\right), \left(1, \frac{3}{2}\right)$$
 and $\left(\frac{5}{2}, 4\right)$ lie on one line? (4)

- A2. Find the angle between $\overline{a} = (1, -1, 0)$ and $\overline{b} = (0, 1, -1)$. (4)
- A3. For the given function f(x) find all numbers x_i in the open interval (a, b) for which mean value theorem is satisfied, if
 - (a) $f(x) = x^3 x$, (a, b) = (0, 1).
 - (b) $f(x) = 1 x^{\frac{2}{3}}, (a, b) = (-1, 1).$ (4,4)
- A4. Express the polynomial $p(x) = 7 8x + 4x^2 + 5x^3 3x^4$ in Taylor form about $x_0 = 1.$ (4)
- A5. Verify equality of mixed derivatives theorem for $f(x, y) = x^2y + xy^3$. (4)
- A6. Minimize $f(x, y) = x^2 + y^2$, subject to constraint x + 2y = 3. (5)
- A7. Compute the volume under the graph of $z = 6x^2y + 8xy^3$ over the region 1 < x < 2, 3 < y < 4. (5)
- A8. Solve the following initial value problem

$$\frac{dy}{dx} = -4yx, \quad y(0) = y_0 \tag{6}$$

SECTION B: Answer Any THREE Questions

QUESTION B1 [20 Marks]

- B1. (a) Use cross product to find
 - (i) a unit vector perpendicular to both

$$\overline{a} = i + 2k, \overline{b} = i + j - k.$$

(ii) The area of the triangle spanned by the vectors $\overline{a} = (0, 2, 4), \overline{b} = (2, 4, 2).$ (5,5)

(b) Find the volume of parallelepiped spanned by the directed segments \overline{OA} , \overline{OB} , and \overline{OC} if the coordinates of A, B, and C are (1, 0, 0), (1, 1, 0) and (0, 0, 4), respectively. (5)

- (c) (i) State and prove the Rolle's theorem, and thus
- (ii) Apply it for f(x) = |x| 1, -1 < x < 1. (5)

(4,4)

QUESTION B2 [20 Marks]

B2. (a) Evaluate

(i)
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x};$$

(ii)
$$\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}.$$

(b) (i) Write down Maclaurin's formula with its reminder.

(ii) Expand $\sin x$ in Maclaurin's series.

(iii) Use quadratic approximation to compute $\sin x$, and estimate the error for small |x|.

(iv) In particular, compute $\sin 0.06$ and estimate the error. (3,3,3,3)

QUESTION B3 [20 Marks]

B3. (a) Apply the chain rule to evaluate f'_u and f'_v if $f(x, y) = x^2 - y^2$, $x = u^2 + v^2$, y = 2uv. (6)

(b) Find and classify all stationary points of $f(x, y) = x^2 - y^2 + 4x + 2y$. (4)

(c) An experimental farm has 3600m of fencing to create a rectangular area that will be subdivided into four equal subregions. What is the largest total area that can be enclosed? (10)

QUESTION B4 [20 Marks]

B4. (a) Compute the volume of solid under surface $z = x^2 y$ and over the interior of the triangle with vertices (0,0), (0,1), (1,0). (6)

(b) Pass to polar coordinates to evaluate a double integral of $\exp(x^2 + y^2)$ over the region D, where

$$D = \left\{ (x, y) : x > 0, y > 0, 1 < x^2 + y^2 < 9 \right\}.$$

(c) Compute a triple integral of $f(x, y, z) = yz^2 \exp(xyz)$ over a region D, where D is a cube 0 < x < 1, 0 < y < 1, 0 < z < 1. (8)

QUESTION B5 [20 Marks]

B5. (a) Solve ODE with homogeneous coefficients

$$2(2x^2 + y^2)dx - xydy = 0.$$

(6)

(6)

(7)

(b) Test the ODE for exactness and solve it $3x(xy-2)dx + (x^3+2y)dy = 0.$ (7) (c) Solve the initial value problem

۰.

$$y'' + 4y' + 4y = 0$$
, $y(0) = 1$, $y'(\dot{0}) = -1$.

END OF EXAMINATION PAPER____