University of Swaziland

Supplementary Examination, 2017/2018

B.Sc. II, BEd. II

Title of Paper : Mathematics for Scientists
Course Number : M215/MAT 215
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: Answer ALL Questions

A1. Do the points $\left(\frac{1}{2}, \frac{1}{2}\right),\left(1, \frac{3}{2}\right)$ and $\left(\frac{5}{2}, 4\right)$ lie on one line?
A2. Find the angle between $\bar{a}=(1,-1,0)$ and $\bar{b}=(0,1,-1)$.
A3. For the given function $f(x)$ find all numbers x_{i} in the open interval (a, b) for which mean value theorem is satisfied, if
(a) $f(x)=x^{3}-x,(a, b)=(0,1)$.
(b) $f(x)=1-x^{\frac{2}{3}},(a, b)=(-1,1)$.

A4. Express the polynomial $p(x)=7-8 x+4 x^{2}+5 x^{3}-3 x^{4}$ in Taylor form about $x_{0}=1$.
A5. Verify equality of mixed derivatives theorem for $f(x, y)=x^{2} y+x y^{3}$.
A6. Minimize $f(x, y)=x^{2}+y^{2}$, subject to constraint $x+2 y=3$.
A7. Compute the volume under the graph of $z=6 x^{2} y+8 x y^{3}$ over the region $1<$ $x<2,3<y<4$.
A8. Solve the following initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=-4 y x, \quad y(0)=y_{0} \tag{6}
\end{equation*}
$$

SECTION B: Answer Any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Use cross product to find
(i) a unit vector perpendicular to both

$$
\begin{equation*}
\bar{a}=i+2 k, \bar{b}=i+j-k . \tag{5,5}
\end{equation*}
$$

(ii) The area of the triangle spanned by the vectors $\bar{a}=(0,2,4), \bar{b}=(2,4,2)$.
(b) Find the volume of parallelepiped spanned by the directed segments $\overline{O A}, \overline{O B}$, and $\overline{O C}$ if the coordinates of A, B, and C are $(1,0,0),(1,1,0)$ and $(0,0,4)$, respectively.
(c) (i) State and prove the Rolle's theorem, and thus
(ii) Apply it for $f(x)=|x|-1,-1<x<1$.

QUESTION B2 [20 Marks]

B2. (a) Evaluate
(i) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$;
(ii) $\lim _{x \rightarrow 0} \frac{\tan x-x}{x-\sin x}$.
(b) (i) Write down Maclaurin's formula with its reminder.
(ii) Expand $\sin x$ in Maclaurin's series.
(iii) Use quadratic approximation to compute $\sin x$, and estimate the error for small $|x|$.
(iv) In particular, compute $\sin 0.06$ and estimate the error.

QUESTION B3 [20 Marks]

B3. (a) Apply the chain rule to evaluate f_{u}^{\prime} and f_{v}^{\prime} if $f(x, y)=x^{2}-y^{2}, x=u^{2}+v^{2}, y=2 u v$.
(b) Find and classify all stationary points of $f(x, y)=x^{2}-y^{2}+4 x+2 y$.
(c) An experimental farm has 3600 m of fencing to create a rectangular area that will be subdivided into four equal subregions. What is the largest total area that can be enclosed?

QUESTION B4 [20 Marks]

B4. (a) Compute the volume of solid under surface $z=x^{2} y$ and over the interior of the triangle with vertices $(0,0),(0,1),(1,0)$.
(b) Pass to polar coordinates to evaluate a double integral of $\exp \left(x^{2}+y^{2}\right)$ over the region D, where

$$
\begin{equation*}
D=\left\{(x, y): x>0, y>0,1<x^{2}+y^{2}<9\right\} \tag{6}
\end{equation*}
$$

(c) Compute a triple integral of $f(x, y, z)=y z^{2} \exp (x y z)$ over a region D, where D is a cube $0<x<1, \quad 0<y<1, \quad 0<z<1$.

QUESTION B5 [20 Marks]

B5. (a) Solve ODE with homogeneous coefficients

$$
2\left(2 x^{2}+y^{2}\right) d x-x y d y=0
$$

(b) Test the ODE for exactness and solve it $3 x(x y-2) d x+\left(x^{3}+2 y\right) d y=0$.
(c) Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1 \tag{7}
\end{equation*}
$$

