University of Swaziland

Main Examination, 2017/2018

BASS II, B.Ed (Sec.) II, B.Sc. II, B.Eng. II

Title of Paper : Ordinary Differential Equations
Course Number : MAT216/M213
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of SIX (6) questions in TWO sections.
2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
3. Section B consists of FIVE questions, each worth 20\%. Answer ANY THREE (3) questions in this section.
4. Show all your working.
5. Start each new major question (A1, B2 - B6) on a new page and clearly indicate the question number at the top of the page.
6. Indicate your program next to your student ID.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

a) Solve the following differential equation

$$
2 x y-9 x^{2}+\left(2 y+x^{2}+1\right) \frac{d y}{d x}=0 .
$$

b) Solve the following differential equation

$$
\begin{equation*}
y^{\prime \prime}-8 y^{\prime}+17 y=0 \tag{7}
\end{equation*}
$$

c) By eliminating the constants, determine the ODE satisfied by the function

$$
y=(A+x B) e^{-2 x}
$$

d) Find the particular solution of the ordinary differential equation

$$
y^{\prime \prime}+3 y^{\prime}-28 y=e^{-7 t}
$$

e) Reduce the ordinary differential equation into a system of first order ordinary differential equations, leaving your answer in matrix form.

$$
y^{\prime \prime \prime}+8 y^{\prime \prime}+16 y=0
$$

f) Find the inverse Laplace transform of

$$
H(s)=\frac{s+7}{s^{2}-3 s-10}
$$

g) Find the general solution of

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0
$$

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]
a) Solve the initial value problem

$$
6 y^{\prime}-2 y=x y^{4}, \quad y(0)=-2
$$

b) Consider the ordinary differential equation

$$
(x \sin (y)+\cos (y)) d y+(x+y) \sin (y) d x=0
$$

i) Show that the ordinary differential equation is not exact.
ii) Find the solution of the ordinary differential equation.
c) Consider the ordinary differential equation

$$
\left(x^{2}-y^{2}\right) d x+x y d y=0
$$

i) Show that the ordinary differential equation is homogeneous.
ii) Hence find the solution of the ordinary differential equation.

QUESTION B3 [20 Marks]

a) Using the method of variation of parameters, find a general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{x} \ln (x)
$$

b) Given that $y_{1}(x)=x$ is a solution of $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$,
i) Find a second linearly independent solution $y_{2}(x)$.
ii) Show that $y_{1}(x)$ and $y_{2}(x)$ are linearly independent.

QUESTION B4 [20 Marks]

a) Using Laplace Transforms, find the solution of the IVP

$$
2 y^{\prime \prime}+3 y^{\prime}-2 y=t e^{-2 t}, \quad y(0)=0, \quad y^{\prime}(0)=-2
$$

b) Show that

$$
\mathcal{L}\left\{u^{\prime \prime}\right\}=s^{2} U(s)-s u(0)-u^{\prime}(0)
$$

where \mathcal{L} is the Laplace transform.

QUESTION B5 [20 Marks]

Solve the following ODE using the series solution method around $x_{0}=0$. Find the first four terms in each portion of the series solution.

$$
\left(x^{2}+1\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

QUESTION B6 [20 Marks]

a) Find the general solution of the ordinary differential equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

b) Using the method of undetermined coefficients, find the general solution of the ordinary differential equation

$$
y^{\prime \prime}+y=\cos (t)
$$

c) Find the general solution of

$$
\frac{d \mathbf{X}}{d t}=\left(\begin{array}{cc}
1 & 3 \\
1 & -1
\end{array}\right) \mathbf{X}
$$

where $\mathbf{X}=\binom{x}{y}$. Note that x and y are functions of t.

$f(t)$	$f(t)=F(s)$	$f(t)$	$f(t)=F(s)$
1		$a e^{a t}-b e^{b t}$	s
	$\frac{1}{s}$	$a-b$	$\overline{(s-a)(s-b)}$
$e^{a t} f(t)$	$F(s-a)$	$t e^{a t}$	$\frac{1}{(s-a)^{2}}$
$\mathcal{U}(t-a)$	$\underline{e^{-a s}}$		
	s	$t^{n} e^{a t}$	$n!$
$f(t-a) \mathcal{U}(t-a)$	$e^{-u s} F(s)$	¢	$\overline{(s-a)^{n+1}}$
	1	$e^{a t} \sin k t$	k
$\delta(l)$	1	$e^{a} \sin k t$	$\overline{(s-a)^{2}+k^{2}}$
$\delta\left(t-t_{0}\right)$	$e^{-s t_{0}}$	$e^{a t} \cos$	$s-a$
		$e^{a} \cos$	$\overline{(s-a)^{2}+k^{2}}$
$t^{n} f(t)$	$(-1)^{n} \frac{d F(s)}{d s^{n}}$		k
$f^{\prime}(t)$	$s F(s)-f(0)$	$e^{a t} \sinh k t$	$\overline{(s-a)^{2}-k^{2}}$
$f^{n}(t)$	$s^{n} F(s)-s^{(n-1)} f(0)-$	$e^{a t} \cosh k t$	$\frac{s-a}{(s-a)^{2}-k^{2}}$
	$\cdots-f^{(n-1)}(0)$	$t \sin k t$	$\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}$
$\int_{0}^{t} f(x) g(t-x) d x$	$F(s) G(s)$		$\left(s^{2}+k^{2}\right)^{2}$ $s^{2}-k^{2}$ $\left(s^{2}+k^{2}\right)^{2}$
	n !	$t \cos k t$	$\overline{\left(s^{2}+k^{2}\right)^{2}}$
$l^{n}(n=0,1,2, \ldots)$	$\frac{1}{s^{n+1}}$	$t \sinh k t$	2 ks
$t^{x}(x \geq-1 \in \mathbb{R})$	$\underline{\Gamma(x+1)}$	$t \sinh k t$	$\overline{\left(s^{2}-k^{2}\right)^{2}}$
	s^{x+1}	t cosh 1	$s^{2}+k^{2}$
$\sin k t$	k	$t \cosh k t$	$\overline{\left(s^{2}-k^{2}\right)^{2}}$
	$\overline{s^{2}+k^{2}}$	$\sin a t$	
$\cos k t$	s	t	$\arctan \frac{a}{s}$
	$\overline{s^{2}+k^{2}}$		
		$\frac{1}{\sqrt{\pi} t} e^{-a^{2} / 4 t}$	$\underline{e^{-a \sqrt{s}}}$
$e^{a t}$	$\frac{1}{s-a}$	$\overline{\sqrt{\pi t}} e^{-}$	\sqrt{s}
$\sinh k t$	$\frac{k}{s^{2}-k^{2}}$	$\frac{a}{2 \sqrt{\pi t^{3}}} e^{-a^{2} / 4 t}$	$e^{-a \sqrt{s}}$
$\cosh k t$	$\frac{s}{s^{2}-k^{2}}$	$\operatorname{erfc}\left(\frac{a}{2 \sqrt{t}}\right)$	$\frac{e^{-a \sqrt{s}}}{s}$
$e^{a t}-e^{b t}$	1		
$a-b$	$\overline{(s-a)(s-b)}$		

