UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2017/2018
B.Sc. II, BASS II, BED. II, B.ENG. II

Title of Paper : Linear Algebra

Course Number : MAT221/M220

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer AlL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

QUESTION A1

(a) Let V be all ordered pairs of real numbers. Define addition and scalar multiplication as follows:
$\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}+1\right)$ and $\propto\left(x_{1}, y_{1}\right)=\left(\propto x_{1}+\propto-1, \propto y_{1}+\propto-1\right)$. Show that V is a vector space.
(b) Given that $A=\left(\begin{array}{rrr}1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & -1 & -2\end{array}\right)$. Use the augmented matrix $[A: I]$ to compute A^{-1}.
(c) Determine whether the following has a non-trivial solution:

$$
\begin{array}{r}
2 x+y-z+2 w=0 \\
x+y+z+w=0 \\
3 x+2 y+2 z+2 w=0
\end{array}
$$

(5 marks)

QUESTION 2

(a) Use Cramer's rule to solve (i) and use Gaussian elimination to solve (ii)
(1) $2 x+2 y+z=1$

$$
3 x+y+z=2
$$

$$
x+y+z=2
$$

(ii) $\quad x_{1}+z_{2}+x_{3}=3$

$$
2 x_{1}+3 x_{2}+x_{3}=5
$$

$$
x_{1}+x_{2}=2 x_{3}=-5
$$

(10 marks)
(b). Find the inverses by inspection

$$
B=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right) \quad C=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(5 marks)
(c) Given that $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right)$. Verify Cayley-Hamilton theorem for the matrix A .

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3

(a) Determine whether the sets of vectors in the vector space V are linearly dependent or independent.
(i) $\left\{2 x^{2}+x, x^{2}+3, x\right\} \quad V=P_{2}(x)$
(ii) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\right\} \quad V=M_{2}(R)$
(10 marks)
(b) Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set of non-zero vectors in a vector space V. Prove that S is linearly dependent \Leftrightarrow one of the vectors is a linear combination of the preceding vectors in S.
(10 marks)

QUESTION B4

(a) Find conditions for λ and μ for which the following system has
(1) a unique solution
(i) no solution or
(iii) infinitely many solutions

$$
\begin{aligned}
x+y-4 z & =0 \\
2 x+3 y+z & =1 \\
4 x+4 y+\lambda z & =\mu
\end{aligned}
$$

(10 marks)
(b) Let $T: R^{2} \rightarrow R^{3}$ be given by $T(x, y)=(x-2 y, 2 x+y, x+y)$
(i) Find the standard matrix of T
(ii) Find the matrix of T with respect to B^{\prime} and B where

$$
B^{\prime}=\{(1,-1),(0,1)\} \text { and } B=\{(1,1,0),(0,1,1),(1,-1,1)\}
$$

(10 marks)

QUESTION B5

(a) Prove that if a homogeneous system has more unknowns than the number of equations then it has a non-trivial solution.
(b) Find the characteristic polynomial; eigenvalues and eigenvectors of the following matrix:

$$
\left(\begin{array}{rrr}
1 & 2 & 1 \\
2 & -2 & 1 \\
2 & 2 & 3
\end{array}\right)
$$

(10 marks)

QUESTION B6

(a) Show that B is a basis for R^{3}

$$
B=\{(0,2,1),(1,0,2),(1,-1,0)\}
$$

(5 marks)
(b) Show that the vector $\left(\begin{array}{c}12 \\ 12 \\ -3\end{array}\right)$ is a linear combination of the vectors $(2,0,1)^{T},(4,2,0)^{T},(1,3,-1)^{T} \quad$ (5 marks)
(c) Let $B_{1}=\left\{\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)\right\}$ and $B_{2}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ be bases. Find the transition matrix from B_{1} to B_{2}
(10 marks)

QUESTION B7

(a) Given that

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 \\
2 & 1 & 5 & -3 \\
0 & -1 & 3 & 0
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \\
& \text { Use the augmented matrix }[A: I] \text { to find } A^{-1} .
\end{aligned}
$$

(b) In (a) above find a finite sequence of elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$ such that $E_{k} E_{k-1} \ldots E_{I} A=I$.
(c) Evaluate the following determinant using cofactor expansion along the second row:

$$
\left|\begin{array}{rrr}
3 & 2 & 1 \\
-2 & 1 & 2 \\
1 & -3 & 2
\end{array}\right|
$$

(d) Determine whether the system has a non-trivial solution

$$
\begin{array}{r}
-x_{1}+2 x_{2}+2 x_{3}+2 x_{4}=0 \\
3 x_{1}+x_{2}-x_{3}+2 x_{4}=0 \\
x_{1}-2 x_{2}+3 x_{3}-x_{4}=0
\end{array}
$$

(3 marks)

