UNIVERSITY OF SWAZILAND FINAL EXAMINATION, 2017/2018 B.Sc. II, BASS II, BED. II, B.ENG. II

Title of Paper : Linear Algebra

Course Number : MAT221/M220

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer ALL questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

QUESTION A1

(a) Let V be all ordered pairs of real numbers. Define addition and scalar multiplication as follows:

 $\begin{aligned} & \left(x_1, y_1\right) \oplus \left(x_2, y_2\right) = \left(x_1 + x_2 + 1, y_1 + y_2 + 1\right) \\ & \text{and} \quad \propto \left(x_1, y_1\right) = \left(\propto x_1 + \alpha - 1, \propto y_1 + \alpha - 1\right). \end{aligned}$ Show that V is a vector space. (10 marks)

(b) Given that
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$
. Use the augmented matrix $\begin{bmatrix} A:I \end{bmatrix}$ to

compute A^{-1} .

(5 marks)

(c) Determine whether the following has a non-trivial solution:

$$2x + y - z + 2w = 0$$
$$x + y + z + w = 0$$
$$3x + 2y + 2z + 2w = 0$$

(5 marks)

QUESTION 2

(a) Use Cramer's rule to solve (i) and use Gaussian elimination to solve (ii)

()
$$2x + 2y + z = 1$$
$$3x + y + z = 2$$
$$x + y + z = 2$$

(ii) $x_1 + z_2 + x_3 = 3$ $2x_1 + 3x_2 + x_3 = 5$ $x_1 + x_2 = 2x_3 = 5$

(10 marks)

(b) Find the inverses by inspection

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(5 marks)

(c) Given that $A = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$. Verify Cayley-Hamilton theorem for the matrix A.

(5 marks)

14.2 S. S.

QUESTION B3

(a) Determine whether the sets of vectors in the vector space V are linearly dependent or independent.

(i)
$$\{2x^2 + x, x^2 + 3, x\}$$
 $V = P_2(x)$
(ii) $\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\}$ $V = M_2(R)$
(10 marks)

(b) Let $S = \{v_1, v_2, ..., v_n\}$ be a set of non-zero vectors in a vector space V. Prove that S is linearly dependent \Leftrightarrow one of the vectors is a linear combination of the preceding vectors in S. (10 marks)

- (a) Find conditions for λ and μ for which the following system has
 - () a unique solution
 - (ii) no solution or
 - (iii) infinitely many solutions

x + y - 4z = 0 2x + 3y + z = 1 $4x + 4y + \lambda z = \mu$

(10 marks)

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by T(x, y) = (x - 2y, 2x + y, x + y)

- (i) Find the standard matrix of T
- (ii) Find the matrix of T with respect to B' and B where $B' = \{(1, -1), (0, 1)\}$ and $B = \{(1, 1, 0), (0, 1, 1), (1, -1, 1)\}$ (10 marks)

- (a) Prove that if a homogeneous system has more unknowns than the number of equations then it has a non-trivial solution.
 (10 marks)
- (b) Find the characteristic polynomial eigenvalues and eigenvectors of the following matrix:

(1	2	1
2	-2	1
$\lfloor 2$	2	3)

(10 marks)

(a) Show that B is a basis for R^3

$$B = \{(0, 2, 1), (1, 0, 2), (1, -1, 0)\}$$
 (5 marks)

(b) Show that the vector $\begin{pmatrix} 12\\12\\-3 \end{pmatrix}$ is a linear combination of the vectors

$$(2, 0, 1)^{T}, (4, 2, 0)^{T}, (1, 3, -1)^{T}$$
 (5 marks)

(c) Let
$$B_1 = \begin{cases} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \end{cases}$$
 and $B_2 = \begin{cases} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{cases}$ be bases. Find the

transition matrix from $B_{\rm 1}$ to $~B_{\rm 2}$

(10 marks)

trans transfer time transfer time

ંગ્ર

(a) Given that

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 2 & 1 & 5 & -3 \\ 0 & -1 & 3 & 0 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Use the augmented matrix $[A:I]$ to find A^{-1} .

- (b) In (a) above find a finite sequence of elementary matrices E_1, E_2, \dots, E_k such that $E_k E_{k-1} \dots E_I A = I$. (13 marks)
- (c) Evaluate the following determinant using cofactor expansion along the second row:

•

3	2	1
-2	1	2
1	- 3	2

(4 marks)

(d) Determine whether the system has a non-trivial solution

$$-x_{1} + 2x_{2} + 2x_{3} + 2x_{4} = 0$$

$$3x_{1} + x_{2} - x_{3} + 2x_{4} = 0$$

$$x_{1} - 2x_{2} + 3x_{3} - x_{4} = 0$$

(3 marks)