UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, 2017/2018 B.Sc. II, BASS II, BED. II, B.ENG. II

Title of Paper : Linear Algebra
Course Number : MAT221/M220

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE
This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

QUESTION A1

(a) Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set of non-zero vectors in a vector space V. Explain precisely what is meant by each of the following statements:
(i) S spans V
(2 marks)
(ii) S is linearly dependent in V
(2 marks)
(iii) S is a basis for V
(2 marks)
(b) Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation defined by $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 x-z \\ x+y-z \\ z\end{array}\right)$
(i) Find the matrix A of T with respect to the standard basis.
(ii) Find the matrix A^{\prime} of T with respect to the basis

$$
B=\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\}
$$

(iii) Find a 3×3 transition matrix P
(iv) Show that $A^{\prime}=P A P^{-1}$
(14 marks)

QUESTION A2

(a) Let V be a vector space, A and B be finite sets of non-zero vectors in V such that $A \subset B$. Show that
(1) A linearly dependent $\Rightarrow B$ is also linearly dependent
(ii) B linearly independent $\Rightarrow A$ is also linearly independent (10 marks)
(b) (i) Express A and A^{-1} as productsof elementary matrices where

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right)
$$

(ii) Compute the product for A^{-1} and show that A^{-1} is the inverse of A (10 marks)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3

(a) Find the characteristic polynomial, eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{rrr}
2 & 2 & 3 \\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right)
$$

(14 marks)
(b) Use Cramer's rule to solve

$$
\left(\begin{array}{lll}
2 & 2 & 1 \\
3 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

(6 marks)

QUESTION B4

(a) Find values of k for which the linear system has
(i) a unique solution
(ii) no solution or
(iii) infinitely many solutions

$$
\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
1 & -k^{2} & -5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
k
\end{array}\right)
$$

(10 marks)
(b) (i) Find the co-ordinate vector of $\left(\begin{array}{l}1 \\ 5 \\ 9\end{array}\right)$ with respect to $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
(6 marks)
(c) Find the standard matrix for the linear transformation $T: R^{2} \rightarrow R^{3}$ where

$$
T\binom{x}{y}=\left(\begin{array}{c}
2 x+3 y \\
x \\
4 x-2 y
\end{array}\right)
$$

(4 marks)

QUESTION B5

(a) Let V be the set of all ordered pairs of real number. Define addition and scalar multiplication as follows:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}+1\right) \\
& \propto\left(x_{1}, y_{1}\right)=\left(\propto x_{1}+\propto-1, \propto y_{1}+\propto-1\right)
\end{aligned}
$$

Show that V is a vector space.
(10 marks)
(b) Show that the vector $(1,2,4)$ is a linear combination of the vectors $(0,2,1)$,

$$
(1,1,2) \text { and }(1,-1,-1)
$$

(6 marks)
(c) Determine whether the following has a non-trivial solution:

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}+x_{4}=0 \\
2 x_{1}+x_{2}-x_{3}+2 x_{4}=0 \\
3 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}=0
\end{array}
$$

(4marks)

QUESTION B6

(a) Determine whether the following mappings are linear transformations
(i) $T: R^{3} \rightarrow R^{2}$ defined by $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{x+y-z}{2 x+y}$
(ii) $T: R^{3} \rightarrow R^{3}$ defined by $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}x+1 \\ x+y \\ x+2 y\end{array}\right)$
(10 marks)
(b) Prove that the set $B=\left\{x^{2}+1, x-1,2 x+2\right\}$ is a basis for the vector space $V=P_{2}(x)$ (10 marks)

QUESTION B7

$S=$
(a) Let $\left\{v_{1}, v_{2}, \ldots, v_{n}^{\prime}\right\}$ be a set of non-zero vector in a vector space V. Prove that S is linearly independent if and only if one of the vectors v_{1} is a linear combination of the preceding vectors in S .
(10 marks)
(b) Verify the Cayley-Hamilton theorem for the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \tag{10marks}\\
0 & 1 & 0 \\
2 & 1 & 2
\end{array}\right)
$$

