UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, 2017/2018 B.Sc. II, BASS II, BED. II, B.ENG. II

Title of Paper : Linear Algebra

Course Number : MAT221/M220

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer ALL questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

QUESTION A1

- Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of non-zero vectors in a vector space V. (a) Explain precisely what is meant by each of the following statements:
 - S spans V () (2 marks)
 - S is linearly dependent in V (ii)

(2 marks)

(iii) S is a basis for V

ವರ್ಷ-ವರ್ಷ-೧೯೫೪ ಆಕ್ಷತೆ ಕನ್ನ^{ಿರಿಯ} ಸಿ

(2 marks)

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - z \\ x + y - z \\ z \end{pmatrix}$

Find the matrix A of T with respect to the standard basis. (Ì)

Find the matrix A' of T with respect to the basis (ii)

 $B = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}$

(iii) Find a 3×3 transition matrix P

(iv) Show that $A' = PAP^{-1}$

(14 marks)

QUESTION A2

- (a) Let V be a vector space, A and B be finite sets of non-zero vectors in V such that $A \subset B$. Show that
 - (i) A linearly dependent $\Rightarrow B$ is also linearly dependent
 - (ii) B linearly independent $\Rightarrow A$ is also linearly independent (10 marks)
- (b) (i) Express A and A^{-1} as products of elementary matrices where

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

(ii) Compute the product for A^{-1} and show that A^{-1} is the inverse of A (10 marks)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3

(a) Find the characteristic polynomial, eigenvalues and eigenvectors of the matrix

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$

(b) Use Cramers rule to solve

$$\begin{pmatrix} 2 & 2 & 1 \\ 3 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

(14 marks)

(6 marks)

٠,

- (a) Find values of k for which the linear system has
 - (i) a unique solution
 - (ii) no solution or
 - (iii) infinitely many solutions

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & -k^2 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ k \end{pmatrix}$$

(10 marks)

(b) (i) Find the co-ordinate vector of
$$\begin{pmatrix} 1 \\ 5 \\ 9 \end{pmatrix}$$
 with respect to $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

- ¹

(6 marks)

(c) Find the standard matrix for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ where

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 2x+3y\\ x\\ 4x-2y \end{pmatrix}$$

(4 marks)

(a) Let V be the set of all ordered pairs of real number. Define addition and scalar multiplication as follows:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1) \propto (x_1, y_1) = (\propto x_1 + \propto -1, \propto y_1 + \propto -1).$$

Show that V is a vector space.

(10 marks)

- (b) Show that the vector (1, 2, 4) is a linear combination of the vectors (0, 2, 1), (1, 1, 2) and (1, -1, -1). (6 marks)
- (c) Determine whether the following has a non-trivial solution:

$$x_1 + x_2 - x_3 + x_4 = 0$$

$$2x_1 + x_2 - x_3 + 2x_4 = 0$$

$$3x_1 + 2x_2 + 2x_3 + 2x_4 = 0$$

(4marks)

(a) Determine whether the following mappings are linear transformations

(i)
$$T: R^3 \to R^2$$
 defined by $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y-z \\ 2x+y \end{pmatrix}$

(ii)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 defined by $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+1 \\ x+y \\ x+2y \end{pmatrix}$

(10 marks)

(b) Prove that the set $B = \{x^2 + 1, x - 1, 2x + 2\}$ is a basis for the vector space $V = P_2(x)$ (10 marks)

- (a) Let $\{v_1, v_2, ..., v_n\}$ be a set of non-zero vector in a vector space V. Prove that S is linearly independent if and only if one of the vectors v_1 is a linear combination of the preceding vectors in S. (10 marks)
- (b) Verify the Cayley-Hamilton theorem for the matrix

	(1)	2	3
A =	0	1	0
	2	1	2)

(10 marks)