UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2017/2018

BASS III, B.Ed (Sec.) III, B.Sc III, B.Eng IV

Title of Paper : NUMERICAL ANALYSIS I

Course Number : MAT 311/M311

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- Section B consists of FIVE questions, each worth 20%. Answer ANY THREE
 (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- A1 (a) Suppose you need to evaluate $f(x) = \sqrt{x^4 + 4} 2$ for x near 0.
 - i. Show that a direct calculation of f(0.5) using the definition of f(x) with 3-digit rounding arithmetic can lead to large relative errors. What causes the errors? [5 Marks]
 - ii. Derive an alternative formula for f(x) that has better round-off error properties. Illustrate by using your formula to calculate f(0.5) and the corresponding relative error. [5 Marks]
 - (b) Consider the definite integral

$$\int_{1}^{2} x \ln x \, dx$$

- i. Approximate the integral using Trapezoid Rule with n = 4. [5 Marks]
- ii. Determine bounds on the values of n and h required to approximate the integral to within 10^{-4} . [5 Marks]
- (c) Beginning with $x_0 = 1$, write the first three iterations of Newton's method for the equation $x^3 + x = 1$ [5 marks]
- (d) The quadrature formula

$$\int_{-1}^{1} f(x) \, dx \approx c_0 f(-1) + c_1 f(0) + c_2 f(1)$$

is exact for all polynomials of degree less than or equal to 2. Determine c_0 , c_1 and c_2 .

- (e) i. Convert the decimal 14.9 to its binary equivalent [5 Marks]
 - ii. Convert the binary $100100.\overline{0110}$ to its decimal equivalent

[5 Marks]

[5 Marks]

o mandi

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) Determine the decimal number that has the following single-precision representation

01000011010010001111000000000000

[7 Marks]

- (b) Determine the machine representation in single precision on a 32-bit word length computer (Marc-32) for the decimal number -200.9375. [7 Marks]
- (c) Consider the equation $f(x) = x^3 + 4x^2 10 = 0$. Prove that there exists a unique solution of the equation in [1,2] [6 Marks]

QUESTION B3 [20 Marks]

B3 (a) The *n*th root of the number N can be found by solving the equation $x^n - N = 0$. Show that the Newton's method for this equation is

$$x_{i+1} = \frac{1}{n} \left[(n-1)x_i + \frac{N}{x_i^{n-1}} \right]$$

[5 Marks]

[3 Marks]

- (b) Use the result in (a) to approximate $130^{\frac{1}{3}}$ using $x_0 = 5$ as a starting guess. [5 Marks]
- (c) State the fixed point theorem
- (d) The equation $f(x) = x^3 + 4x^2 10 = 0$ has a root in [1,2]. Prove that the sequence of iterations

$$x_{n+1} = g(x_n)$$
, where $g(x) = \sqrt{\frac{10}{4+x}}$

converges to the solution of the equation f(x) = 0 for any initial guess $x_0 \in [1, 2]$.

[7 Marks]

QUESTION B4 [20 Marks]

B4 (a) Construct a Newton's forward difference table corresponding to the following data and find a polynomial of least degree that goes through the points.

[10 marks]

(b) Example Given the following data table

Derive the Newton interpolation polynomial *directly* and use it to approximate f(0). [10 marks]

QUESTION B5 [20 Marks]

- B5 (a) Construct a quadrature rule on the interval [0, 4] using the nodes 1, 2, 3. [10 Marks]
 - (b) The quadrature formula $\int_{-1}^{1} f(x) dx \approx c_0 f(x_0) + c_1 f(x_1)$ has the highest degree of precision. Determine x_0, c_0, c_1 and x_1 and use the resulting formula to approximate the integral

 $\int_{-1}^1 x^4 \ dx$

[10 Marks]

QUESTION B6 [20 Marks]

B6 (a) Find the LU factorisation of the matrix

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 4 & 5 & 1 \\ 8 & 5 & 0 & 3 \end{bmatrix}$$

where L is a lower triangular matrix with ones on the main diagonal and U is an upper triangular matrix. [10 Marks]

(b) Solve the system $A\mathbf{x} = b$ using the *LU* factorisation obtained in (a) when $b = [1, 1, 2, 0]^T$ [10 Marks]

END OF EXAMINATION PAPER.