University of Swaziland

Final Examination, 2017/2018

B.Sc. III, B.Ed III, B.Eng III, BASS III

Title of Paper : Vector Analysis
Course Number : M312/MAT312
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. Find the equation of the plane which passes through the point $(2,1,-3)$ and is normal to the vector $\hat{\boldsymbol{i}}-2 \hat{j}-4 \hat{\boldsymbol{k}}$.

A2. Express the vector $\bar{F}=(-y, x, 0)$ in spherical coordinates.
A3. Given the paraloloid of revolution $x^{2}+y^{2}-z=1$. Find the unit normal at the point $(1,1,1)$.

A4. Show that the vector $\bar{F}=3 y z^{2} \hat{\boldsymbol{i}}+4 x^{3} z^{2} \hat{\boldsymbol{j}}-3 x^{2} y^{2} \hat{\boldsymbol{k}}$ is solenoidal.
A5. Find the total work done in moving a particle in a force field $\bar{F}=3 x y \hat{i}-5 z \hat{\boldsymbol{j}}+10 x \hat{\boldsymbol{k}}$ along a curve $x=t^{2}+1, y=2 t^{2}, z=t^{3}$ from $t=1$ to $t=2$.

A6. (a) Apply the Green's theorem to show that the area bounded by a simple closed curve c is given by $\frac{1}{2} \oint x d y-y d x$. (b) Use line integral to find the area enclosed by the curves $y=x$ and $y^{2}=4 x$

A7. Verify divergence theorem for a sphere of radius R with center at the origin and with

$$
\begin{equation*}
\bar{A}=x i+y j+2 k, \quad|\bar{A}|=R \tag{5}
\end{equation*}
$$

Hint: Volume of sphere $\frac{4}{3} \pi R^{2}$, surface area $4 \pi R^{2}$.

SECTION B: Answer Any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Find the equation of the plane which contains the lines

$$
\begin{equation*}
\frac{x-1}{-1}=\frac{y-2}{2}=\frac{z-3}{4} \text { and } \frac{x+1}{2}=\frac{y-4}{-2}=\frac{z-2}{1} . \tag{6}
\end{equation*}
$$

(b) Find the acute angle between the planes $2 x-y+z+8=0$ and $3 x+2 y-z=0$
(c)
(i) Find the directional derivative of $f=x y z^{2}$ at point $(1,0,3)$ in the direction of the vector $\bar{a}=\hat{i}-\hat{j}+\hat{k}$
(ii) Compute the greatest rate of change of f.
(iii) The direction of the maximum rate of increease of f.

QUESTION B2 [20 Marks]

B2. (a) Consider the toroidal curvilinear coordinates R, θ, φ which are defined in terms of rectangular cartesian coordinates x, y, z by

$$
x=(a-R \cos \theta) \cos \varphi, \quad y=(a-R \cos \theta) \sin \varphi, \quad z=R \sin \theta
$$

where $a=$ constant and $\quad R<a$.
(i) Show that it is an orthogonal system of coordinates.
(ii) Find the Lame parameters.
(b) Given an arbitrary system of curvilinear orthogonal coordinates q_{1}, q_{2}, q_{3}. Derive the formulas for
(i) Velocity,
(ii) Acceleration.

QUESTION B3 [20 Marks]

B3. (a) Prove the following formulae
(i) $\nabla \times(f \bar{A})=f \nabla \times \bar{A}+\nabla f \times \bar{A}$.
(ii) $\nabla \times \bar{r}=0$
(iii) $(\bar{A} \cdot \nabla) \bar{r}=\bar{A}$
(b) Consider a vector field

$$
\bar{F}=\left(y^{2}+2 x z^{2}-1\right) \hat{\boldsymbol{i}}+2 x y \hat{\boldsymbol{j}}+2 x^{2} z \hat{\boldsymbol{k}} .
$$

(i) Is \bar{F} irrotational? Explain
(ii) Is \bar{F} conservative? Explain
(iii) If so, find a scalar potential

QUESTION B4 [20 Marks]

B4. (a) If $\vec{U}=(x, 2 y, 3 z)$, evaluate
(i) $\int_{0}^{A} \bar{U} \cdot d \bar{r}$,
(ii) $\int_{0}^{A} \bar{U} \times d \bar{r}$,
(iii) $\int_{0}^{A} \bar{U} d s$
along the curve $\bar{r}=\left(t, \frac{t^{2}}{\sqrt{2}}, \frac{t^{3}}{3}\right)$ from the origin to the point $A\left(1, \frac{1}{\sqrt{2}}, \frac{1}{3}\right)$.
(b) Verify Stoke's theorem for

$$
\begin{equation*}
\bar{A}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{\boldsymbol{k}}, \tag{8}
\end{equation*}
$$

where S is half surface of the sphere $x^{2}+y^{2}+z^{2}=1$, and C is its boundary.

QUESTION B5 [20 Marks]

B5. Apply the divergence theorem
(a) To derive theorem of the gradient

$$
\begin{equation*}
\iint_{V} \int \nabla \varphi d V=\iint_{S} \varphi d \bar{S} \tag{6}
\end{equation*}
$$

(b) To derive Green's first identity

$$
\begin{equation*}
\iint_{V} \int\left(u \nabla^{2} w+\nabla u \cdot \nabla w\right) d V=\iint_{S}(u \nabla w) \cdot d \bar{S} \tag{6}
\end{equation*}
$$

(c) To transform the following double integral to a triple integral for the specified closed surface S.

$$
\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)
$$

S is a surface of a cylinder $x^{2}+y^{2}=4,0 \leq z \leq 2$, and the circular disks $z=0$ and $z=2\left(x^{2}+y^{2} \leq 4\right)$.

