University of Swaziland

Supplementary Examination, 2017/2018

B.Sc. III, B.Eng III, B.Ed III, BASS III

Title of Paper : Vector Analysis
Course Number : M312/MAT312
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None
This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. Find the equation of the plane which passes through the point $(1,2,3)$ and is normal to the vector $-\hat{\boldsymbol{i}}+\hat{j}+2 \hat{k}$.

A2. Express the vector $\bar{F}(-y, x, 0)$ in cylindrical coordinates.
A3. Find the unit vector normal to the surface $x y z=2$ at the point $(1,-1,-2)$.
A4. Show that the vector

$$
\begin{equation*}
\bar{F}=\left(x^{3} z-2 x y z\right) \hat{i}+\left(x y-3 x^{2} z\right) \hat{j}+\left(y z^{2}-x z\right) \hat{k} \tag{5}
\end{equation*}
$$

is solenoidal.
A5. Find the work done by force $\bar{F}=3 x y \hat{i}-y^{2} \hat{j}$ along the curve

$$
\begin{equation*}
C=\left\{x, y: y=2 x^{2}, \text { from }(0,0) \text { to }(1,2)\right\} \tag{5}
\end{equation*}
$$

A6. (a) Apply the Green's theorem to show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \oint_{c} x d y-y d x$.
(b) Use line integral to evaluate the area enclosed by the straight lines $y=x, y=-x, y=4$
A7. Let $\bar{A}=\nabla f$ and $\nabla^{2} f=-4 \pi \rho$. Apply the divergence theorem to show that

$$
\begin{equation*}
\iint_{S} \bar{A} \cdot \bar{n} d s=-4 \pi \iint_{V} \int \rho d v \tag{5}
\end{equation*}
$$

SECTION B: Answer Any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Find the equation of the plane containing the point $(-2,-5,2)$ and the line

$$
\begin{equation*}
\frac{x-7}{1}=\frac{y}{3}=\frac{z-1}{-5} \tag{6}
\end{equation*}
$$

(b) Find the acute angle between the planes $5 x-y-2 z=5$ and $y=0$
(c)
(i) Find the direction along which the directional derivative of $f=x^{2} y z^{3}$ at point $(2,1,-1)$ is greatest.
(ii) Determine this greatest value.
(iii) Find the rate of change of this f at the same point in the direction of a positive z-axis

QUESTION B2 [20 Marks]

B2. (a) Elliptical curvilinear coordinates ξ, η, ζ are such that the position vector is given by

$$
\bar{r}=(\cos h \xi \cos \eta, \quad \sin h \xi \sin \eta, \zeta),
$$

where $0 \leq \xi<\infty, \pi<\eta \leq \pi,-\infty<\zeta<\infty$.
(i) Show that this system is orthogonal.
(ii) Find the Lame parameters.
(b) For the curvilinear orthogonal coordinates system of $q_{1}, q_{2} q_{3}$ the velocity and the components of acceleration are given by

$$
\bar{V}=\sum_{l=1}^{3} H_{l} \dot{q}_{l} \bar{e}_{l}, \quad a_{l}=\frac{1}{H_{l}}\left[\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{l}}\right)-\frac{\partial T}{\partial q_{l}}\right] .
$$

in the usual notations.
Pass the spherical coordinates. Derive the formulas for
(i) Velocity,
(ii) Acceleration.

QUESTION B3 [20 Marks]

B3. (a)Prove the following formulae
(i) $\nabla \cdot(f \bar{A})=f \nabla \cdot A+\nabla f \cdot \bar{A}$.
(ii) $(\nabla \times \nabla f)=0$.
(iii) $\nabla \cdot(\nabla \times \bar{A})=0$.
(b) Consider a vector field

$$
\bar{F}=(\sin y+z) \hat{i}+(x \cos y-z) \hat{j}+(x-y) \hat{k}
$$

(i) Is \bar{F} irrotational? Explain.
(ii) Is \bar{F} conservative? Explain.
(iii) If so, find a scalar potential.

QUESTION B4 [20 Marks]

B4. (a) Evaluate

$$
\begin{equation*}
\int_{C} z d \bar{r} \tag{7}
\end{equation*}
$$

where C is the curve $\bar{r}=(a \cos t, b \sin t, c t)$ from the point $t=0$ to the point $t=2 \pi$.
(b) Evaluate

$$
\int_{C}(y-\sin x) d x+\cos x d y
$$

where C is a triangle with the vertices
$(0,0),\left(\frac{\pi}{2}, 0\right)$ and $\left(\frac{\pi}{2}, 1\right)$
(i) Directly,
(ii) by Green's theorem.

QUESTION B5 [20 Marks]

B5. (a) Apply the divergence theorem to show that for any differentiable vector $\bar{A}=$ (A_{x}, A_{y}, A_{z}) it follows

$$
\begin{equation*}
\iint_{S}\left(A_{x} d y d z+A_{y} d z d x+A_{z} d x d y\right)=\iiint_{V}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right) d x d y d z \tag{5}
\end{equation*}
$$

in the usual notations.
(b) Evaluate $\iint_{S} \bar{A} \cdot d \bar{S}$ where

$$
\bar{A}=4 x z \hat{\boldsymbol{i}}-y^{2} \hat{\boldsymbol{j}}+y z \hat{\boldsymbol{k}}
$$

and S is the surface of the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$
(i) Directly.
(ii) Apply the divergence theorem to pass to the triple integral.

