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SECTION A [40 Marks]: ANSWER ALL QUESTIONS 

QUESTION Al [40 Marks] 

a) Compare and contrast the properties of the functions eX and eZ where x E 1R and z E C. [5] 

b) Express 0 - l)l+i in the form a + ib. [5] 

c) Express sin-1(1) in the form a + ib. [5] 

d) Let C be a positively oriented boundary of the square whose sides lie along the lines x = ±3 
and y = ±3. Evaluate 

[5] 

e) Let C be a positively oriented circle such that Izl = 4. Evaluate 

r _z-,---,-9__ dz 
Je C~ + 3iK~ 3i) 

[5] 

f) Find the Laurent series that represents the function 

J(z) = (zz- + i) 

in the domain 0 < Izi < 1. [5J 

g) Suppose that 
g(z) = a(x, y) + if3(x, y) 

and it's conjugate are both analytic in a given domain D. Show that g(z) must be constant 
throughout D. [7] 

1 dz 
h) Show that --. = 21f'i where C is the circle Iz - il = 4e. [3} 

e z - t 
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SECTION B: ANSWER ANY THREE QUESTIONS 


QUESTION B2 [20 Marks] 

a) Determine if the function 

g(z) = 3x2 + 2x 3y2 - 1 + i(6xy + 2y) 

is analytic everywhere or not? If g(z) h5 analytic, find g'(z). [10] 

b) Determine whether u(x,y) 4xy3 - 4x3y + X, is harmonic. If u is harmonic, find the 
harmonic conjugate v and the analytic function J(z) = u + iv with J(1 + i) = 5 + 4£. [10] 

QUESTION B3 [20 Marks] 

a) Show that 

~ln (~)
2 l-z 

[10] 

b) Solve for 	z and express z in the form a + ib 

i) e2z = 1 + i J3 [5] 

ii) In (~ - z) (1 - 1ri) [5]
l+z 

QUESTION B4 [20 Marks] 

a) Evaluate life is 

i) the circle I.~ + 31 = !) [7] 
ii) the circle Iz - il = 1 [3] 

b) Prove that if a function J(z) = ¢(x, y) + ir,(x, y) is analytic in a domain D, then ¢(x, y) 
and T/(x, y) are harmonic in D. [10] 

.fe 
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QUESTION B5 [20 Marks] 

a) Find the Laurent series that represents the fUIlction 

2 
f(z) = z(z 1) 

in the domain 0 < I.zl < 1. [8] 

b) Suppose that 
g(z) a(x, y) + if3(x, y) 

and it's conjugate are both analytic in a given domain D. Show that g(z) must be constant 
throughout D. [12] 

QUESTION B6 [20 Marks] 

l sin(1L~) + cos(7rz)
a) Evaluate Jc (z _ 2)(z 1) dz if C is a positively oriented circle such that Izl = 3. [8] 

b) Let C be a positively oriented circle such that Izi 2. Evaluate 

[6] 

c) Let C be a positively oriented circle such that Izl 4. Using Cauchy's residue theorem, 
ovaluate 

[6] 


____________END OF EXAMINATION 


