in and a second s

UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, 2017/2018 B.Sc. III, BASS III, B.Ed. III

- Title of Paper : Abstract Algebra I
- Course Number : M\$323/MAT324
- Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer ALL questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION A1

- (a) Prove that if (a, s) = 1 and (b, s) = 1 then $(ab, s) = 1 \quad \forall a, b, s \in \mathbb{Z}$ (8 marks)
- (b) Give a single numerical example to disprove the following:

"If
$$ax \equiv bx \pmod{n}$$
 then $a \equiv b \pmod{n} \quad \forall a_1 b_1 n \in \mathbb{Z}$ " (4 marks)

(c) Prove that every subgroup of a cyclic group is cyclic. (10 marks)

QUESTION A2

(a) Solve the following system:

$$2x \equiv 1 \pmod{5}$$
$$3x \equiv 4 \pmod{7}$$

(7 marks)

- (b) Find the number of generators for cyclic groups of order 8 and 60. (7 marks)
- (c) Prove that a non-abelian group of order 2p, p prime contains at least one element of order p. (6 marks)

SECTION B

ANSWER ANY THREE QUESTIONS

QUESTION B3

(a) Prove that every cyclic group is abelian. (5 marks)
(b) Let n be a positive integer greater than 1, and let, for a, b ∈ Z

aRb ⇔ a ≡ b(mod n)
Prove that R is an equivalence relation on Z
(7 marks)

(c) Show that a group G is abelian if and only if (ab)⁻¹ = a⁻¹b⁻¹ (6 marks)

QUESTION B4

(a) Let
$$\alpha = \begin{pmatrix} 12345678 \\ 54132876 \end{pmatrix}$$
 $\beta = \begin{pmatrix} 12345678 \\ 85641723 \end{pmatrix}$

(i) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one. (8 marks)

(ii) Compute
$$a^{-1}$$
, $\beta^{-1}\alpha$, $(\alpha\beta)^{-1}$ (6 marks)

(b) Find the greatest common divisor d of the numbers 616 and 427 and express it in the form

d = 616x + 427y

for some $x, y \in Z$

(6 marks)

QUESTION B5

- (a) Compute [do not list] the number of elements in each of the cyclic subgroups
 - (i) $\langle 30 \rangle$ of Z_{42}
 - (ii) $\langle 15 \rangle of Z_{48}$

(6 marks)

(b)	For 2	(7 marks)	
(c)	(i) Fi	Find all cosets of $H = \{0, 6, 12\}$ in Z_{18}	
	(ii)	Show that the groups Z_6 and S_3 are not isomorphic	(7 marks)

QUESTION B6

(a)	Prove that every finite gro	(5 marks)		
(b)	Show that the set $G = Q - \{0\}$ with respect to the operation			
	$a \times b = \frac{ab}{s}$	$\forall a, b \in G \text{ is a group.}$	(9 marks)	
(c)	Prove that if $a^2 = e$	$\forall a \in G$, where G is a group then	n G is abelian. (6 marks)	

QUESTION B7

(a) If $\varphi: G \to H$ is an isomorphism of groups and e is the identity of G then

(i)
$$(e)\varphi$$
 is the identity element in H .
(ii) $(a^n)\varphi = [(a)\varphi]^n \quad \forall \ n \in Z^+$ (12 marks)

- (b) (i) State Langrange's theorem
 - (ii) Using (b)(i) above or otherwise, show that Zp has no proper subgroup if p is a prime number. (8 marks)