UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION, 2017/2018

B.Sc. III, BASS III, B.Ed. III

Title of Paper	Abstract Algebra I
Course Number	M $323 / \mathrm{MAT} 324$
Time Allowed	Three (3) Hours
Instructions	
This paper consists of TWO (2) Sections:	
a. SECTION A (40 MARKS)	
-	ALL questions in Section A.
b. $\begin{aligned} \text { SE } \\ - \\ - \\ - \\ - \\ -\end{aligned}$	
	are FIVE (5) questions in Section B.
	question in Section B is worth 20 Marks.
	(ANY THREE (3) questions in Section B.
	answer more than three (3) questions in Section B, only three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE
This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

QUESTION A1

(a) Prove that if $(a, s)=1$ and $(b, s)=1$ then $(a b, s)=1 \forall a, b, s \in Z$ (8 marks)
(b) Give a single numerical example to disprove the following:

$$
\begin{equation*}
\text { "If } a x \equiv b x(\bmod n) \text { then } a \equiv b(\bmod n) \forall a_{1} b_{1} n \in Z " \tag{4marks}
\end{equation*}
$$

(c) Prove that every subgroup of a cyclic group is cyclic.

QUESTION A2

(a) Solve the following system:

$$
\begin{aligned}
& 2 x \equiv 1(\bmod 5) \\
& 3 x \equiv 4(\bmod 7)
\end{aligned}
$$

(b) Find the number of generators for cyclic groups of order 8 and 60.
(7 marks)
(c) Prove that a non-abelian group of order $2 p, p$ prime contains at least one element of order p.
(6 marks)

SECTION B

ANSWER ANY THREE QUESTIONS

QUESTION 33

(a) Prove that every cyclic group is abelian.
(b) Let n be a positive integer greater than 1 , and let, for $a, b \in Z$ $a R b \quad \Leftrightarrow \quad a \equiv b(\bmod n)$

Prove that R is an equivalence relation on Z
(c) Show that a group G is abelian if and only if $(a b)^{-1}=a^{-1} b^{-1}$ (6 marks)

QUESTION B4

(a) Let $\alpha=\binom{12345678}{54132876} \quad \beta=\binom{12345678}{85641723}$
(i) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one.
(ii) Compute $a^{-1}, \beta^{-1} \alpha,(\alpha \beta)^{-1}$
(b) Find the greatest common divisor d of the numbers 616 and 427 and express it in the form

$$
d=616 x+427 y
$$

for some $x, y \in Z$

QUESTION B5

(a) Compute [do not list] the number of elements in each of the cyclic subgroups
(i) $\langle 30\rangle$ of Z_{42}
(ii) $\langle 15\rangle$ of Z_{48}
(b) For Z_{12}, find all the subgroups and give a lattice diagram
(c) (i) Find all cosets of $H=\{0,6,12\}$ in Z_{18}
(ii) Show that the groups Z_{6} and S_{3} are not isomorphic
(7 marks)

QUESTION B6

(a) Prove that every finite group of prime order is cyclic.
(b) Show that the set $G=Q-\{0\}$ with respect to the operation

$$
a \times b=\frac{a b}{s} \quad \forall a, b \in G \text { is a group. }
$$

(c) Prove that if $a^{2}=e \quad \forall a \in G$, where G is a group then G is abelian.

QUESTION B7

(a) If $\varphi: G \rightarrow H$ is an isomorphism of groups and e is the identity of G then
(i) $\quad(e) \varphi$ is the identity element in H.
(ii) $\quad\left(a^{n}\right) \varphi=[(a) \varphi]^{n} \quad \forall n \in Z^{+}$
(b) (i) State Langrange's theorem
(ii) Using (b)(i) above or otherwise, show that $Z p$ has no proper subgroup if p is a prime number.

