University of Swaziland

Final Examination, December 2017

B.Sc III, B.A.S.S III, B.Ed III

Title of Paper	: Real Analysis
<u>Course Code</u>	: MAT331/M331

<u>Time Allowed</u> : Three (3) Hours

Instructions

ž ,

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS
 Answer ANY THREE questions.
 Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

[3]

SECTION A: ANSWER ALL QUESTIONS

Ċ

.

Question 1

(a) Consider a set $A \subseteq \Re$.		
(i) When do we say that a set A is bounded?	[3]	
(ii) Give example(s) of sets which are (I) bounded below not above and	(II)	
bounded neither above nor below.	[3]	
(iii) Define supremum and infimum of a set A .	[3]	
(iv) Let S be a set. Prove that supremum of S if it exists, is unique.	[4]	
(b) (i) Give the ϵ , N definition for the convergence of a sequence $\langle a_n \rangle$ to a num	nber	
L.	[3]	
(ii) Using ϵ , N definition show that $\lim_{n \to \infty} \frac{2n+1}{n+3} = 2$.	[5]	
(iii) Define limit point and limit of a sequence.		
Limit point of a sequence is different from limit of a sequence. Do you agree		
with this statement? Support your answer with an example.	[4]	
(c) True or false? If $\lim_{n \to \infty} a_n = 0$, then the series $\sum_{n=1}^{\infty} a_n$ is convergent. Explain y		
answer.	[3]	
(d) Let $f : [a, b] \to \Re$ be a function and let $c \in (a, b)$.		
(i) True or false? If f is continuous at c , then f is differentiable at c . Exp		
your answer.	[3]	
(ii) When do we say that the function f is uniformly continuous? Explain ; answer.	your	
Explain the major distinction between continuity and uniform continuit	у.	

(ii) Define the left-hand derivative of of f at c. [3]

(e) State the Riemann's integrability criterion. [3]

[8]

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

- (a) Show that for any $x, y \in \Re$, $|x + y|^2 + |x y|^2 = 2|x|^2 + 2|y|^2$. [6]
- (b) If x is a limit point of a set A and $A \subseteq B$, then x is also a limit point of B. [6]
- (c) By finding the left-hand and right-hand derivatives of

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{when } x \neq 0\\ 0 & \text{when } x = 0 \end{cases}$$

determine f'(0).

٩,

Question 3

(a) Find the limit superior and limit inferior of the sequence

$$<(-1)^n(2^n+3^n)>.$$
 [6]

- (b) If $a_n = 1 + \frac{(-1)^n}{2n}$, find the least positive integer m such that $|a_n 1| < \frac{1}{10^3} \quad \forall n > m.$ [6]
- (c) Prove, by definition, that the sequences whose terms are given by $\frac{n}{n+1}$ is a Cauchy sequence. [8]

Question 4

(a) True or false? If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then it converges absolutely. Explain your answer. [7]

ೆ ತನ್ನ ಗನ್ನೂ ಕೆ. ಶ್ರೇ ಕ್ರಾ. ಗ್ರೆ.

(b) State the conditions for the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots \qquad (a_n > 0 \ \forall n)$$
ergent. [3]

to be convergent.

- (c) Let $\sum_{n=1}^{\infty} a_n$ be series of positive terms. Name at least three tests for convergence of this series. [3]
- (d) Prove that a series of positive terms ether converges or diverges to ∞ . [7]

Question 5

(a) Let
$$f(x) = \frac{x^2 + 2}{x^2 + 1}$$
, then given $\epsilon > 0$, find a real number δ such that $|f(x) - 2| < \epsilon$ whenever $0 < |x| < \delta$. [6]

- (b) Prove that the limit of a function at a point, when it exists, is unique. [6]
- (c) Show that the function defined by $f(x) = x^2$ is uniformly continuous on [-2, 2].

[8]

Question 6

- (a) Let f(x) = x for $x \in [0,1]$ and let $P = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$ be a partition of [0,1]. Compute U(P, f) and L(P, f). [8]
- (b) Let $f: [-1,1] \to \Re$ be given by

$$f(x) = |x| = \begin{cases} -x & \text{when } x \le 0\\ x & \text{when } x > 0 \end{cases}$$

Show that f is Riemann integrable and find $\int_{-1}^{1} f(x) dx$. [12]