University of Swaziland

Final Examination, December 2017

B.Sc III, B.A.S.S III, B.Ed III

Title of Paper : Real Analysis
Course Code : MAT331/M331

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Special requirements: None.

THIS PAPER SHOULD NOT' BE OPENED UNTLL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) Consider a set $A \subseteq \Re$.
(i) When do we say that a set A is bounded?
(ii) Give example(s) of sets which are (I) bounded below not above and (II) bounded neither above nor below.
(iii) Define supremum and infimum of a set A.
(iv) Let S be a set. Prove that supremum of S if it exists, is unique.
(b) (i) Give the ϵ, N definition for the convergence of a sequence $\left\langle a_{n}\right\rangle$ to a number L.
(ii) Using ϵ, N definition show that $\lim _{n \rightarrow \infty} \frac{2 n+1}{n+3}=2$.
(iii) Define limit point and limit of a sequence.

Limit point of a sequence is different from limit of a sequence. Do you agree with this statement? Support your answer with an example.
(c) True or false? If $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent. Explain your answer.
(d) Let $f:[a, b] \rightarrow \Re$ be a function and let $c \in(a, b)$.
(i) True or false? If f is continuous at c, then f is differentiable at c. Explain your answer.
(ii) When do we say that the function f is uniformly continuous? Explain your answer.
Explain the major distinction between continuity and uniform continuity.
(ii) Define the left-hand derivative of of f at c.
(e) State the Riemann's integrability criterion.

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) Show that for any $x, y \in \Re, \quad|x+y|^{2}+|x-y|^{2}=2|x|^{2}+2|y|^{2}$.
(b) If x is a limit point of a set A and $A \subseteq B$, then x is also a limit point of B.
(c) By finding the left-hand and right-hand derivatives of

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \frac{1}{x} & \text { when } x \neq 0 \\
0 & \text { when } x=0
\end{array}\right.
$$

determine $f^{\prime}(0)$.

Question 3

(a) Find the limit superior and limit inferior of the sequence

$$
\begin{equation*}
<(-1)^{n}\left(2^{n}+3^{n}\right)> \tag{6}
\end{equation*}
$$

(b) If $a_{n}=1+\frac{(-1)^{n}}{2 n}$, find the least positive integer m such that $\left|a_{n}-1\right|<\frac{1}{10^{3}} \quad \forall n>m$.
(c) Prove, by definition, that the sequences whose terms are given by $\frac{n}{n+1}$ is a Cauchy sequence.

Question 4

(a) True or false? If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then it converges absolutely. Explain your answer.
(b) State the conditions for the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots \quad\left(a_{n}>0 \quad \forall n\right)
$$

to be convergent.
(c) Let $\sum_{n=1}^{\infty} a_{n}$ be series of positive terms. Name at least three tests for convergence of this series.
(d) Prove that a series of positive terms ether converges or diverges to ∞.

Question 5

(a) Let $f(x)=\frac{x^{2}+2}{x^{2}+1}$, then given $\epsilon>0$, find a real number δ such that

$$
\begin{equation*}
|f(x)-2|<\epsilon \text { whenever } 0<|x|<\delta \text {. } \tag{6}
\end{equation*}
$$

(b) Prove that the limit of a function at a point, when it exists, is unique.
(c) Show that the function defined by $f(x)=x^{2}$ is uniformly continuous on $[-2,2]$.

Question 6

(a) Let $f(x)=x$ for $x \in[0,1]$ and let $P=\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ be a partition of $[0,1]$. Compute $U(P, f)$ and $L(P, f)$.
(b) Let $f:[-1,1] \rightarrow \Re$ be given by

$$
f(x)=|x|=\left\{\begin{array}{cc}
-x & \text { when } x \leq 0 \\
x & \text { when } x>0
\end{array}\right.
$$

Show that f is Riemann integrable and find $\int_{-1}^{1} f(x) d x$.

