University of Swaziland

Supplementary Examination, July 2018

B.Sc III, B.A.S.S III, B.Ed III

Title of Paper : Real Analysis

Course Code : MAT331/M331
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Special requirements: None

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) Consider a set $A \subseteq \Re$.
(i.) Define a limit point of the set A.
(ii.) Explain what is means to say that the set A is bounded below and define $\inf (\mathrm{A})$.
(iii.) True or false. The set N of natural numbers is not a neighborhood of any of its points. Explain your answer.
(b) (i) Precisely explain each of the following statements about a sequence $\left\langle a_{n}\right\rangle$ in \Re
(I.) $\left.<a_{n}\right\rangle$ is convergent.
(II.) $\left\langle a_{n}\right\rangle$ is a Cauchy sequence.
(ii.) Let a_{n} and b_{n} be two convergent sequences. prove that the sequence $a_{n}+b_{n}$ also convergent.
(iii.) Prove that if the sequence $\left\langle a_{n}\right\rangle$ is convergent, then $\left\langle a_{n}\right\rangle$ is bounded.
(c) Let $\sum u_{n}$ be a series in \Re. Precisely explain the following statements.
(i.) $\sum u_{n}$ converges.
(ii.) $\sum u_{n}$ is absolutely convergent.
(d) Let $f:[a, b] \rightarrow \Re$ be a function and let $c \in(a, b)$. Precisely explain the following:
(i.) f is continuous at c.
(ii.) f is uniformly continuous on $[a, b]$.
(iii) Prove: If f is differentiable at c then, then f is continuous at c.
(e) State the Riemann's integrability criterion.

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) Show that for any $x, y \in \Re, \quad|x+y| \leq|x|+|y|$.
(b) Show that for a bounded set $S \subseteq \Re$, there exists a positive number A such that $|x| \leq A \forall x \in S$. Prove that the converse is also true.
(c) Show that

$$
f(x)= \begin{cases}x^{2}-1 & \text { when } x \geq 1 \tag{8}\\ 1-x & \text { when } x<1\end{cases}
$$

is not differentiable at $x=1$.

Question 3

(a) Find the limit superior and limit inferior of the sequence

$$
\begin{equation*}
<(-10)^{n}\left(1+\frac{1}{n}\right)> \tag{6}
\end{equation*}
$$

(b) Prove that a sequence $\left\langle\frac{2 n-7}{3 n+2}\right\rangle$
(i) is monotonically increasing,
(ii) is bounded,
(iii) tends to the limit $\frac{2}{3}$.
(c) Prove: If a sequence $\left\langle a_{n}\right\rangle$ converges l, then every subsequence of $\left\langle a_{n}\right\rangle$ also converges to l.

Question 4

(a) State the Cauchy convergence criterion for series.
(b) Prove that $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(c) Is the converse of the previous statement, (b), true? Justify your answer.
(d) Prove: The necessary and sufficient condition condition for the convergence of a positive term series $\sum a_{n}$ is that the sequence $\left\langle S_{n}\right\rangle$ of its partial sums is bounded above.

Question 5

(a) If $a_{n}=2+\frac{(-1)^{n}}{n^{2}}$, find the least positive integer m such that $\left|a_{n}-2\right|<\frac{1}{10^{4}} \quad \forall n>m$.
(b) Let $f:[a, b] \rightarrow \Re$ be a function, and let $c \in(a, b)$. Precisely explain each of the following statements.
(i) A real number p is the left derivative of f at c.
(ii) A real number q is the right derivative of f at c.
(c) Show that the function defined by $f(x)=x^{3}$ is uniformly continuous on $[-1,1]$.

Question 6

(a) Let $f(x)=x^{2}$ for $x \in[0,1]$ and let $P=\left\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\right\}$ be a partition of $[0,1]$. Compute $U(P, f)$ and $L\left(P, f^{\prime}\right)$.
(b) From the definition of the Riemann integral show that $\int_{1}^{2}(2 x+3)=6$.

