i jan State - Ango ya Wa

University of Swaziland

Supplementary Examination, July 2018

B.Sc III, B.A.S.S III, B.Ed III

Title of Pa	iper :	Real	Analysis
-------------	--------	------	----------

Course Code : MAT331/M331

<u>Time Allowed</u> : Three (3) Hours

Instructions

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS
 Answer ANY THREE questions.
 Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) Consider a set $A \subseteq \Re$.	
(i.) Define a limit point of the set A .	[3]
(ii.) Explain what is means to say that the set A is bounded below as $\inf(A)$.	nd define [3]
(iii.) True or false. The set N of natural numbers is not a neighborhood its points. Explain your answer.	of any of [3]
(b) (i) Precisely explain each of the following statements about a sequence in \Re	$e < a_n >$
(I.) $< a_n >$ is convergent.	[3]
(II.) $\langle a_n \rangle$ is a Cauchy sequence.	[3]
(ii.) Let a_n and b_n be two convergent sequences. prove that the sequence also convergent.	the $a_n + b_n$ [4]
(iii.) Prove that if the sequence $\langle a_n \rangle$ is convergent, then $\langle a_n \rangle$ is bo	unded.
	[4]
(c) Let $\sum u_n$ be a series in \Re . Precisely explain the following statements.	
(i.) $\sum u_n$ converges.	[2]
(ii.) $\sum u_n$ is absolutely convergent.	[2]
(d) Let $f : [a, b] \to \Re$ be a function and let $c \in (a, b)$. Precisely explain the	following:
(i.) f is continuous at c .	[3]
(ii.) f is uniformly continuous on $[a, b]$.	[3]
(iii.) Prove: If f is differentiable at c then, then f is continuous at c .	[4]
(e) State the Riemann's integrability criterion.	[3]

[8]

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

- (a) Show that for any $x, y \in \Re$, $|x+y| \le |x|+|y|$. [6]
- (b) Show that for a bounded set $S \subseteq \Re$, there exists a positive number A such that $|x| \leq A \quad \forall x \in S$. Prove that the converse is also true. [6]
- (c) Show that

$$f(x) = \begin{cases} x^2 - 1 & \text{when } x \ge 1\\ 1 - x & \text{when } x < 1 \end{cases}$$

is not differentiable at x = 1.

Question 3

(a) Find the limit superior and limit inferior of the sequence

$$<(-10)^n\left(1+\frac{1}{n}\right)>.$$
[6]

(b) Prove that a sequence
$$\langle \frac{2n-7}{3n+2} \rangle$$

(i) is monotonically increasing, [3]

- (ii) is bounded, [3]
- (iii) tends to the limit $\frac{2}{3}$. [3]
- (c) Prove: If a sequence $\langle a_n \rangle$ converges l, then every subsequence of $\langle a_n \rangle$ also converges to l. [5]

Question 4

(a) State the Cauchy convergence criterion for series. [3]

(b) Prove that
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then $\lim_{n \to \infty} a_n = 0.$ [5]

- (c) Is the converse of the previous statement, (b), true? Justify your answer. [3]
- (d) Prove: The necessary and sufficient condition condition for the convergence of a positive term series $\sum a_n$ is that the sequence $\langle S_n \rangle$ of its partial sums is bounded above. [9]

Question 5

- (a) If $a_n = 2 + \frac{(-1)^n}{n^2}$, find the least positive integer m such that $|a_n 2| < \frac{1}{10^4} \quad \forall n > m.$ [8]
- (b) Let $f : [a, b] \to \Re$ be a function, and let $c \in (a, b)$. Precisely explain each of the following statements.
 - (i) A real number p is the left derivative of f at c. [2]
 - (ii) A real number q is the right derivative of f at c. [2]
- (c) Show that the function defined by $f(x) = x^3$ is uniformly continuous on [-1, 1].

[8]

Question 6

- (a) Let $f(x) = x^2$ for $x \in [0, 1]$ and let $P = \{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\}$ be a partition of [0, 1]. Compute U(P, f) and L(P, f). [10]
- (b) From the definition of the Riemann integral show that $\int_{1}^{2} (2x+3) = 6.$ [10]