University of Swaziland

Final Examination - December 2017

BSc IV, BEng III, BEd IV, BASS IV

Title of Paper : Partial Differential Equations
Course Number : M415/MAT416
Time Allowed : Three (3) hours

Instructions:

1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 3 (out of 5) questions in Section B.
4. Show all your working.
5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A
 Answer ALL Questions in this section

A. 1 a. Classify each of the following PDEs according to grder, linearity and homogeneity.
i. $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(x \frac{\partial u}{\partial x}\right)=u$ [3 marks]
ii. $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(u \frac{\partial^{2} u}{\partial x^{2}}\right)=x$
b. Find the PDE whose general solution is

$$
u(x, y)=\sqrt{x^{2}+y^{2}}+x F(y)+G(y)
$$

where F and G are arbitrary functions.
c. Find the eigenvalues and eigensolutions of the Sturm-Liouville system

$$
X^{\prime \prime}+\alpha^{2} X=0, \quad X^{\prime}(0)=X(\ell)=0
$$

where α and $\ell>0$ are real constants.
d. Consider the initial-value problem

$$
u_{t}-u_{x}=2 x u, \quad u(x, 0)=4 e^{x-x^{2}}
$$

Solve the problem using
i. the method of characteristics
ii. the method of separation of variables
e. Use Laplace transforms to solve the initial-value problem

$$
\begin{equation*}
u_{t}+u=e^{-t}, \quad u(x, 0)=e^{-x}, \quad x>0, t>0 \tag{5marks}
\end{equation*}
$$

f. The ODE

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \rho}\left(\rho^{2} \frac{\mathrm{~d} R}{\mathrm{~d} \rho}\right)-s(s+1) R=0 \tag{1}
\end{equation*}
$$

where s is a real constant, arises in the solution of PDEs in spherical domains. Find the general solution of (1).

Section B

Answer ANY 3 Questions in this section

B. 1 a. Consider the PDE

$$
\begin{equation*}
4 u_{x x}+5 u_{x y}+u_{y y}+x=y \tag{2}
\end{equation*}
$$

i. Classify (2) as parabolic, hyperbolic or elliptic.
ii. Reduce (2) into its canonical form
iii. Find the general solution of (2).
b. Find the solution of the Cauchy problem of the wave equation

$$
\begin{array}{rlrl}
u_{t t}-c^{2} u_{x x} & =0, & & -\infty<x<\infty, t \geqslant 0 \\
u(x, 0) & =\sin x, & -\infty<x<\infty \\
u_{t}(x, 0) & =2 x, & -\infty<x<\infty
\end{array}
$$

B. 2 a. Consider the function $f(x)=x, 0<x<2$.
i. Make a sketch of the even extension of $f(x)$ over the interval $-4<x<8$. [3 marks]
ii. Find the half-range cosine expasion of $f(x)$. [6 marks]
iii. Use the results from ii. and Parseval's identity to find the value of the infinite sum

$$
\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\cdots
$$

[5 marks]
b. Use the generating function

$$
G(z, t)=\exp \left[\frac{t}{2}\left(z-\frac{1}{z}\right)\right]=\sum_{n=-\infty}^{\infty} z^{n} J_{n}(t)
$$

to derive the recurrence relation

$$
\frac{2 n}{t} J_{n}(t)=J_{n-1}(t)+J_{n+1}(t)
$$

for Bessel functions.
B. 3 Consider a semi-infinite plate of width π whose two sides are insulated while the base is kept at x. The steady-state temperature distribution of the plate is governed by the system

$$
\begin{aligned}
\nabla^{2} u=u_{x x}+u_{y y} & =0, & & 0 \leq x \leq \pi, y \geqslant 0 \\
u(x, 0) & =x, & & 0 \leq x \leq \pi \\
u_{x}(0, y)=u_{x}(\pi, y) & =0, & & 0<y<\infty .
\end{aligned}
$$

Find the function $u(x, y)$ for the equilibrium temperature distribution.
[20 marks]
B. 4 a. Find the PDE satisfied by u, defined by

$$
u=x y+F\left(x^{2}+y^{2}-u\right)
$$

where $u=u(x, y)$ and F is an arbitrary function.
[10 marks]
b. Find the general solution of the PDE

$$
\begin{equation*}
(x-y) u_{x}+y u_{y}=x u \tag{10marks}
\end{equation*}
$$

B. 5 Consider the non-homogeneous boundary-value problem

$$
\begin{aligned}
u_{t}-u_{x x} & =e^{-t} \sin \left(\frac{1}{2} x\right),, & & 0<x<\pi, t>0 \\
u(0, t)=u_{x}(\pi, t) & =0, & & t \geqslant 0 \\
u(x, 0) & =4 \sin \left(\frac{3}{2} x\right), & & 0 \leqslant x \leqslant \pi
\end{aligned}
$$

a. Show that the eigenfunctions and eigenvalues of the associated homogeneous problem are given by $\sin \alpha_{n} x$ and $\alpha_{n}=\frac{1}{2}(2 n-1), \quad n=1,2,3, \cdots$, respectively.
b. Hence, or otherwise, solve the non-homogeneous problem. [13 marks]

