University of Swaziland

Supplementary/Re-sit Examination - July 2018

BSc IV, BEng III, BEd IV, BASS IV

Title of Paper : Partial Differential Equations
Course Number : M415/MAT416
Time Allowed : Three (3) hours

Instructions:

1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 3 (out of 5) questions in Section B.
4. Show all your working.
5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A

Answer ALL Questions in this section

A. 1 a. Classify each of the following PDEs according to order, linearity and homogeneity.
i. $x^{2} u_{x x}-y^{2} u_{y}=e^{-x^{2}}$ [3 marks]
ii. $u_{x}+(x-u) u_{y}=x^{2} u$
[3 marks]
b. Find the PDE whose general solution is

$$
u(x, y)=\frac{1}{x+F(y)}
$$

where F is an arbitrary function.
c. Evaluate

$$
\int_{-\pi}^{\pi} \sin n x \sin m x d x
$$

where both m and m are integers.
d. Consider the initial-value problem

$$
x u_{x}+u_{y}=-u, u(x, 0)=4 x
$$

Solve the problem using
i. the method of characteristics
ii. the method of separation of variables
e. Use Laplace transforms to solve the initial-value problem

$$
\begin{equation*}
u_{t}-u=5, u(x, 0)=2 x, \quad x>0, t>0 \tag{5marks}
\end{equation*}
$$

f. Find the general solution of the PDE

$$
\begin{equation*}
x^{2} u_{x x}+x u_{x}-4 u=0 \tag{1}
\end{equation*}
$$

where $u=u(x, y)$.
[5 marks]

Section B
 Answer ANY 3 Questions in this section ${ }^{1}$

B. 1 Consider the PDE

$$
\begin{equation*}
25 u_{x x}+20 u_{x y}+4 u_{y y}=24 \tag{2}
\end{equation*}
$$

i. Classify (2) as parabolic, hyperbolic or elliptic.
ii. Reduce (2) into its canonical form
[12 marks]
iii. Find the general solution of (2).
[5 marks]
B. 2 Consider the Cauchy problem of the wave equation

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =0, \quad-\infty<x<\infty, t \geqslant 0 \\
u(x, 0) & =\Phi(x), \quad-\infty<x<\infty \\
u_{t}(x, 0) & =\Psi(x), \quad-\infty<x<\infty
\end{aligned}
$$

Derive the d'Alembert solution

$$
u(x, t)=\frac{1}{2}[\Phi(x+c t)+\Phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \Psi(\alpha) \mathrm{d} \alpha
$$

[20 marks]
B. 3 Consider the Dirichlet problem for a circle

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}} & =0, \quad 0 \leq \rho \leq a \\
u(a, \phi) & =1-\cos \phi
\end{aligned}
$$

Find the solution $u(\rho, \phi)$ of the problem.
B. 4 a. Find the PDE satisfied by u, defined by

$$
u=x^{2}+y^{2}+F(x y-u)
$$

where $u=u(x, y)$ and F is an arbitrary function.
[10 marks]
b. Find the solution of the PDE

$$
u\left(x u_{x}-y u_{y}\right)=y^{2}-x^{2}
$$

containing the straight line $u=x=y$.

[^0]B. 5 Solve the initial-boundary-value problem for a vibrating string " [20 marks]
\[

$$
\begin{aligned}
c^{2} u_{x x}-u_{t t} & =0, & & 0<x<2, t>0 \\
u(0, t)=u(2, t) & =0, & & t \geqslant 0 \\
u(x, 0) & =1-|x-1|, & & 0 \leqslant x \leqslant 2 \\
u_{t}(x, 0) & =0, & & 0 \leqslant x \leqslant 2 .
\end{aligned}
$$
\]

[^0]: ${ }^{1}$ Please turn over for question 8.5 .

