UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS
SUPPLEMENTARY EXAMINATION 2012

TITLE OF PAPER : THERMODYNAMICS
COURSE NUMBER : P242

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS
EACH QUESTION CARRIES 25 MARKS
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

INFORMATION

For a monatomic gas: $\gamma=\frac{5}{3}$ and $C_{V}=\frac{3 R}{2} ; C_{P}=\frac{5 R}{2}$
For a diatomic gas: $\gamma=\frac{7}{5}$
Universal gas constant, $\mathrm{R}=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Specific heat of water $=4190 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Latent heat of vaporisation of water $2.256 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$
Stefan-Boltzmann constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}$

OUESTION 1

(a) Consider an ideal gas which is caused to move through a p-V cycle ABCA . A to B is an isochoric process, B to C is an isothermal expansion, and C to A is an isobaric process.

Explain, for each leg or step of the cycle, whether each of the following variables is negative, zero or positive: temperature change, heat, work done, internal energy change, entropy change. Consider the gas to be the system.
(b) A heat reservoir at 373 K is used to evaporate 0.2 kg of water originally at 313 K .
(i) How much energy must flow from the reservoir to do this?
(ii) By how much would the entropy of the water change?

OUESTION 2

(a) A rectangular container of dimensions ' a ', ' b ' and ' c ' consists of N particles of an ideal gas. The mass of each particle is m and the density of the gas is ρ. The pressure exerted by the gas onto the area ' $a b$ ' is

$$
p=\frac{m\left[\left(v_{x}^{2}\right)_{1}+\left(v_{x}^{2}\right)_{2}+\ldots \ldots \ldots \ldots \ldots+\left(v_{x}^{2}\right)_{N}\right]}{a b c}
$$

Show that the root-mean-square speed of the particles is

$$
\begin{equation*}
v_{r m s}=\sqrt{\overline{v^{2}}}=\sqrt{\frac{3 p}{\rho}} \tag{14marks}
\end{equation*}
$$

(b) Measurements by spacecraft have shown that near the surface of the planet Venus the atmospheric pressure is 90 times that on Earth surface, and the temperature is $500^{\circ} \mathrm{C}$, compared to typical temperatures on Earth of $10^{\circ} \mathrm{C}$. What is the ratio of the speed of an average carbon dioxide molecule on Venus to that of an average carbon dioxide molecule on earth?

Hint: $\frac{1}{2} m v^{2}=\frac{3}{2} k_{B} T$, where the symbols have their usual meanings. (4 marks)
(c) Consider air molecules at $0^{\circ} \mathrm{C}$ and 1 atmosphere pressure. The molecules collide with each other and the radius of an equivalent molecule is $2 \AA$. The mean free path of the molecules depends on their size as well as their concentration. For the conditions stated, the average speed of air molecules is about $1 \times 10^{7} \mathrm{~m} / \mathrm{s}$ and there are approximately 3×10^{25} molecules $/ \mathrm{m}^{3}$.
(i) Calculate the mean free path;
(ii) Calculate the collision frequency.

OUESTION 3

(a) For Carnot cycle shown in Fig. 2.1, the ratio V_{3} / V_{1} is 15 . Steps 1-2 and 3-4 represent isothermal processes whilst steps 2-3 and 4-1 stand for adiabatic processes. The temperature limits of the cycle are $260^{\circ} \mathrm{C}$ (step 1-2) and $21^{\circ} \mathrm{C}$ (step 3-4).

Determine the volume ratios of the isothermal and adiabatic processes, that is, $\mathrm{V}_{4} / \mathrm{V}_{1}$ and V_{3} / V_{4}. Assume that the working medium is a diatomic gas.
(10 marks)
(b) Imagine a Carnot engine which takes 5000 J of heat during each cycle from the hightemperature reservoir at 300 K and gives out 3500 J to the low-temperature reservoir.
(i) Calculate the temperature of the low-temperature reservoir.
(ii) What is the thermal efficiency of the cycle?
(c) Consider the temperatures of the hot and cold reservoirs of a real engine to be 600 K and 400 K , respectively.
(i) If the real engine is replaced by a Carnot engine working between the same two temperatures, with an input Q_{H} of 20 kJ , how much heat would be rejected and how much work would the engine do?
(5 marks)
(ii) What would be the co-efficient of performance of the Carnot engine if it were used as a refrigerator between the same two temperatures?

Fig. 2.1

OUESTION 4

(a) Use the ideal gas law and the relationship $\mathrm{p}^{\gamma}=$ constant to show that for an adiabatic process $\mathrm{TV}^{\gamma-1}=$ constant and that $\mathrm{T}^{\gamma} \mathrm{p}^{1-\gamma}=$ constant, where the symbols have their usual meanings.
(b) Two thousand moles of a monatomic ideal gas is taken through the following cyclic process (1) An isobaric expansion from $2 \mathrm{~m}^{3}$ to $4.6 \mathrm{~m}^{3}$ at a pressure of $4 \times 10^{6} \mathrm{Nm}^{-2}$; (2) An isochoric decrease in pressure from $4 \times 10^{6} \mathrm{Nm}^{-2}$ to $1 \times 10^{6} \mathrm{Nm}^{-2}$; (3) An adiabatic compression back to the initial state.
(i) Sketch the p-V diagram for this cyclic process;
(ii) Find the work done during each step of the cycle and the net work done for the cycle.
(iii) Calculate `the heat exchanged during each step of the cycle and the net heat for the cycle?
(7 marks)

QUESTION 5

(a) Consider a water pipe of internal radius x , external radius y and length z . The inside temperature is T_{1} while the surroundings are at a temperature of T_{2} (where $T_{1}>T_{2}$). Show that heat is conducted through the walls of the pipe at the rate

$$
\frac{d Q}{d t}=\frac{2 \pi k\left(T_{1}-T_{2}\right) z}{\ln (y / x)}
$$

[k is the thermal conductivity of the pipe].
(b) The surface temperature of a spherical mass of molten metal (the source), 3.0 m in radius, is 1073 K . It is surrounded by a spherical shell with an inside radius of 3.0 m and an outside radius of 6.0 m . The thermal conductivity of the shell is $42 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. If the outside of this spherical shell is exposed to room temperature (298 K), what is the rate at which heat flows through the shell?
(c) Assume that the total surface area of the human body is $2.0 \mathrm{~m}^{2}$ and that the temperature at the surface of the body is $40^{\circ} \mathrm{C}$. How much heat would be lost from the body in 10 min if it is exposed to an environment at $15^{\circ} \mathrm{C}$? Assume that the emissivity of the skin is 0.80 ?
(6 marks)

