UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION
2011/2012

TITLE OF PAPER : COMPUTATIONAL METHODS I

COURSE NUMBER :
P262

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS. EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

STUDENTS ARE PERMITTED TO USE MAPLE TO ANSWER THE QUESTIONS.

THIS PAPER HAS SIX PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P262 Computational Methods I

Question one

Given the following non-homogeneous ordinary differential equation as
$\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+5 y(t)=10 \sin (t)+13 \cos (3 t)$
(a) find its particular solution $y_{p}(t)$,
(9 marks)
(b) find the general solution $y_{h}(t)$ for the homogeneous part of the given differential equation,
(c) find the general solution $y_{g}(t)$ for the above given non-homogeneous differential equation,
(d) if given initial conditions as $y(0)=9$ and $\left.\frac{d y(t)}{d t}\right|_{t=0}=1$, find its specific solution of $y(t)$, i.e., $y_{s}(t)$. Plot $y_{s}(t)$ for $t=0$ to 30 and make a brief comment on its large t behavior.

Question two

Given the following differential equation as
$\frac{d^{2} y(x)}{d x^{2}}+6 \frac{d y(t)}{d t}+8 y(t)=0$
set $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s} \quad$ and $\quad a_{0} \neq 0$, utilize the power series method and
(a) write down the indicial equations and find the values of s and possibly the value of a_{1} (if a_{1} is in terms of a_{0} and s , then find the possible values of a_{1} by setting $a_{0}=1$)
(7 marks)
(b) write down the recurrence relation. Set $a_{0}=1$ and use the recurrence relation to find the values of $a_{n}(n=2$ to 10$)$ for each value of s found in (a). Write down two independent series solutions truncated up to a_{10} term.
(8 marks)
(c) (i) write the general solution for the above given differential equation,
(2 marks)
(ii) if given initial conditions as $y(0)=3$ and $\left.\frac{d y(x)}{d x}\right|_{x=0}=-1$, find the specific solution and plot it for $x=0$ to 1 .
(8 marks)

Question three

Given the following differential equations for a coupled oscillator system as

$$
\left\{\begin{array}{l}
\frac{d^{2} x_{1}(t)}{d t^{2}}=-4 x_{1}(t)+3 x_{2}(t) \\
\frac{d^{2} x_{2}(t)}{d t^{2}}=2 x_{1}(t)-5 x_{2}(t)
\end{array}\right.
$$

(a) set $\quad x_{1}(t)=X_{1} e^{i \omega t} \quad$ and $\quad x_{2}(t)=X_{2} e^{i \omega t}$, deduce the following matrix equation $A X=-\omega^{2} X \quad$ where

$$
A=\left(\begin{array}{cc}
-4 & 3 \tag{4marks}\\
2 & -5
\end{array}\right) \quad \text { and } \quad X=\binom{X_{1}}{X_{2}}
$$

(b) (i) find the eigen frequencies of ω,
(ii) find the eigen vectors of X ,
(c) (i) write down the general solutions of $x_{1}(t)$ and $x_{2}(t)$ in terms of the eigenfrequencies and eigenvectors obtained in (b),
(ii) if initial conditions are given as
$x_{1}(0)=2 \quad, \quad x_{2}(0)=-4 \quad,\left.\frac{d x_{1}(t)}{d t}\right|_{t=0}=-1 \quad$ and $\left.\frac{d x_{2}(t)}{d t}\right|_{t=0}=1$, find the specific solutions of $x_{1}(t)$ and $x_{2}(t)$. Plot both $x_{1}(t)$ and $x_{2}(t)$ for $t=0$ to 10 and show them in a single display.

Question four

(a) Given a scalar function $f=5 x y^{2}+2 y z^{2}-3 x y z$,
(i) find the value of $\vec{\nabla} f$ at the point $\mathrm{P}:(1,-1,2)$, (3 marks)
(ii) find the directional derivative of f at the point $P:(1,-1,2)$ along the direction of $\left(\vec{e}_{x} 2-\vec{e}_{y} 3+\vec{e}_{z}\right)$, i.e., $[2,-3,1]$. (4 marks)
(b) Given a vector field $\vec{F}=\vec{e}_{x}\left(5 y^{2}\right)+\vec{e}_{y}\left(10 x y-6 z^{2}\right)+\vec{e}_{z}(-12 y z)$, i.e., $\vec{F}=\left[5 y^{2}, 10 \mathrm{xy}-6 \mathrm{z}^{2},-12 \mathrm{yz}\right]$, find the value of the line integral of \vec{F} from the point $P_{1}:(1,6,0)$ to the point $P_{2}:(3,2,0)$ along a line path of L , i.e., $\int_{p_{1}, L}^{p_{2}} \vec{F} \bullet d \vec{l}$,
(i) if L : a straight line from P_{1} to P_{2} on $z=0$ plane, (8 marks)
(ii) if L : a hyperbolic path described by $y=\frac{6}{x}$ from P_{1} to P_{2} on $\mathrm{z}=0$ plane. Compare this answer with that obtained in (b)(i) and comment on whether the given \vec{F} is a conservative vector field or not., (7 marks)
(iii) use potential command to find out whether the given \vec{F} is a conservative vector field or not. If yes, then find its associated scalar potential.
(3 marks)

Question five

One-dimensional wave equation for a vibrating elastic string of length L can be written as $\frac{\partial^{2} u(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}$ where $u(x, t)$ is a longitudinal vibration amplitude function and c is a constant.
(a) The general solution of the given partial differential equation can be written as

$$
\begin{aligned}
& \begin{aligned}
& \begin{aligned}
& u(x, t)= \\
& \sum_{\forall k} u_{k}(x, t)
\end{aligned} \\
&=\sum_{\forall k}\left(A_{k} \cos (k x)+B_{k} \sin (k x)\right)\left(C_{k} \cos (c k x)+D_{k} \sin (c k x)\right)
\end{aligned} \\
& \text { where } A_{k}, B_{k}, C_{k} \& D_{k} \text { are arbitrary constants. }
\end{aligned}
$$

Applying two fixed end conditions (i.e., $\left.u_{k}(0, t)=0=u_{k}(L, t)\right)$ and zero initial speed condition (i.e., $\left.\frac{\partial u_{k}(x, t)}{\partial t}\right|_{t=0}=0$), deduce from the above general solution that $u(x, t)=\sum_{n=1}^{\infty} E_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{c n \pi t}{L}\right)$
where $E_{n}(n=1,2,3, \ldots$.$) are arbitrary constants.$
(b) if $\mathrm{c}=5, \mathrm{~L}=10$ and the initial position of the string is given as

$$
u(x, 0)=\left\{\begin{array}{lll}
3 x & \text { if } & 0 \leq x \leq 4 \\
-2 x+20 & \text { if } & 4 \leq x \leq 10
\end{array}\right.
$$

(i) find the values of $E_{1}, E_{2}, E_{3}, \cdots \cdots, E_{10}$. Write down the specific solution of $\mathrm{u}(\mathrm{x}, \mathrm{t})$ in its series expression up to E_{10} term.
(ii) plot the solution obtained in (b)(i) at $\mathrm{t}=0, \mathrm{t}=1$ and $\mathrm{t}=2$ respectively, i.e., $u(x, 0), u(x, 1)$ and $u(x, 2)$, for the range of x values from $x=0$ to $\mathrm{x}=10$. Show them in a single display .

