UNIVERSITY OF SWAZILAND 82 FACULTY OF SCIENCE **DEPARTMENT OF PHYSICS** MAIN EXAMINATION 2011/2012 TITLE OF PAPER : **COMPUTATIONAL METHODS I COURSE NUMBER** : P262 TIME ALLOWED **THREE HOURS** : **ANSWER ANY FOUR OUT OF FIVE** INSTRUCTIONS : **QUESTIONS. EACH QUESTION CARRIES 25 MARKS.** MARKS FOR DIFFERENT SECTIONS **ARE SHOWN IN THE RIGHT-HAND** MARGIN.

STUDENTS ARE PERMITTED TO USE MAPLE TO ANSWER THE QUESTIONS.

THIS PAPER HAS <u>SIX</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P262 Computational Methods I

Question one

Given the following non-homogeneous ordinary differential equation as

$$\frac{d^2 y(t)}{dt^2} + 2 \frac{d y(t)}{dt} + 5 y(t) = 10 \sin(t) + 13 \cos(3t)$$

- (a) find its particular solution $y_p(t)$, (9 marks)
- (b) find the general solution $y_h(t)$ for the homogeneous part of the given differential equation, (4 marks)

(c) find the general solution $y_g(t)$ for the above given non-homogeneous differential equation, (2 marks)

(d) if given initial conditions as y(0) = 9 and $\frac{dy(t)}{dt}\Big|_{t=0} = 1$, find its specific solution of y(t), i.e., $y_s(t)$. Plot $y_s(t)$ for t = 0 to 30 and make a brief comment on its large t behavior. (10 marks)

Question two

Given the following differential equation as

÷

$$\frac{d^2 y(x)}{dx^2} + 6 \frac{d y(t)}{dt} + 8 y(t) = 0$$

set $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ and $a_0 \neq 0$, utilize the power series method and

- (a) write down the indicial equations and find the values of s and possibly the value of a_1 (if a_1 is in terms of a_0 and s, then find the possible values of a_1 by setting $a_0 = 1$) (7 marks)
- (b) write down the recurrence relation. Set $a_0 = 1$ and use the recurrence relation to find the values of a_n (n = 2 to 10) for each value of s found in (a). Write down two independent series solutions truncated up to a_{10} term.

(8 marks)

(c) (i) write the general solution for the above given differential equation,

(2 marks)

(ii) if given initial conditions as
$$y(0) = 3$$
 and $\frac{d y(x)}{d x}\Big|_{x=0} = -1$, find the

specific solution and plot it for x = 0 to 1. (8 marks)

Question three

Given the following differential equations for a coupled oscillator system as

$$\begin{cases} \frac{d^2 x_1(t)}{dt^2} = -4 x_1(t) + 3 x_2(t) \\ \frac{d^2 x_2(t)}{dt^2} = 2 x_1(t) - 5 x_2(t) \end{cases}$$

۶.-

÷.

(a) set $x_1(t) = X_1 e^{i\omega t}$ and $x_2(t) = X_2 e^{i\omega t}$, deduce the following matrix equation $A X = -\omega^2 X$ where

$$A = \begin{pmatrix} -4 & 3\\ 2 & -5 \end{pmatrix} \quad and \quad X = \begin{pmatrix} X_1\\ X_2 \end{pmatrix} \quad , \tag{4 marks}$$

- (b) (i) find the eigen frequencies of ω , (4 marks)
 - (ii) find the eigen vectors of X , (4 marks)

(c) (i) write down the general solutions of $x_1(t)$ and $x_2(t)$ in terms of the eigenfrequencies and eigenvectors obtained in (b), (4 marks)

(ii) if initial conditions are given as

$$x_1(0) = 2$$
, $x_2(0) = -4$, $\frac{dx_1(t)}{dt}\Big|_{t=0} = -1$ and $\frac{dx_2(t)}{dt}\Big|_{t=0} = 1$,

find the specific solutions of $x_1(t)$ and $x_2(t)$. Plot both $x_1(t)$ and $x_2(t)$ for t = 0 to 10 and show them in a single display. (9 marks)

Question four

(a) Given a scalar function
$$f = 5 x y^2 + 2 y z^2 - 3 x y z$$
,

÷,

- (i) find the value of $\vec{\nabla} f$ at the point P: (1, -1, 2), (3 marks)
- (ii) find the directional derivative of f at the point P: (1, -1, 2) along the direction of $(\vec{e}_x \ 2 - \vec{e}_y \ 3 + \vec{e}_z)$, i.e., [2, -3, 1]. (4 marks)
- (b) Given a vector field $\vec{F} = \vec{e}_x (5 y^2) + \vec{e}_y (10 x y 6 z^2) + \vec{e}_z (-12 y z)$, i.e.,

 $\vec{F} = [5y^2, 10xy - 6z^2, -12yz]$, find the value of the line integral of \vec{F} from the point P₁: (1,6,0) to the point P₂: (3,2,0) along a line path of L, i.e., $\int_{P_{1,L}}^{P_{2}} \vec{F} \cdot d\vec{l}$,

(i) if L : a straight line from P_1 to P_2 on z = 0 plane, (8 marks)

(ii) if L : a hyperbolic path described by $y = \frac{6}{x}$ from P₁ to P₂ on z = 0plane. Compare this answer with that obtained in (b)(i) and comment on whether the given \vec{F} is a conservative vector field or not., (7 marks)

(iii) use *potential* command to find out whether the given \vec{F} is a conservative vector field or not. If yes, then find its associated scalar potential. (3 marks)

5

Question five

One-dimensional wave equation for a vibrating elastic string of length L can be written as

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad \text{where} \quad u(x,t) \text{ is a longitudinal vibration amplitude function}$$

and c is a constant.

, ¥

(a) The general solution of the given partial differential equation can be written as

$$u(x,t) = \sum_{\forall k} u_k(x,t)$$

= $\sum_{\forall k} (A_k \cos(kx) + B_k \sin(kx)) (C_k \cos(ckx) + D_k \sin(ckx))$
where A_k , B_k , C_k & D_k are arbitrary constants.

Applying two fixed end conditions (i.e., $u_k(0,t) = 0 = u_k(L,t)$) and zero initial speed condition (i.e., $\frac{\partial u_k(x,t)}{\partial t}\Big|_{t=0} = 0$), deduce from the above general solution that $u(x,t) = \sum_{n=1}^{\infty} E_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{c n\pi t}{L}\right)$ where E_n (n = 1, 2, 3,) are arbitrary constants. (8 marks)

(b) if
$$c = 5$$
, $L = 10$ and the initial position of the string is given as

$$u(x,0) = \begin{cases} 3 \ x & if \quad 0 \le x \le 4 \\ -2 \ x + 20 & if \quad 4 \le x \le 10 \end{cases}$$

- (i) find the values of E_1 , E_2 , E_3 , \cdots , E_{10} . Write down the specific solution of u(x,t) in its series expression up to E_{10} term.
- (ii) plot the solution obtained in (b)(i) at t = 0, t = 1 and t = 2 respectively,
 i.e., u(x,0), u(x,1) and u(x,2), for the range of x values from x = 0 to
 x = 10. Show them in a single display. (6 marks)

6