UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

*. s.

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2011/2012

TITLE OF PAPER : COMPUTATIONAL METHODS I

COURSE NUMBER : P262

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER <u>ANY FOUR</u> OUT OF SIX QUESTIONS. EACH QUESTION CARRIES 25 MARKS.

> MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

STUDENTS ARE PERMITTED TO USE MAPLE TO ANSWER THE QUESTIONS.

THIS PAPER HAS <u>SEVEN</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1

P262 Computational Methods I

.

Question one

then find its specific solution and plot it for x = 0 to 5 . (5 marks)

Question two

Given the following Bessel's equation as

e

$$x^{2} \frac{d^{2} y(x)}{dx^{2}} + x \frac{d y(x)}{dx} + (x^{2} - 4)y(x) = 0 ,$$

use dsolve command to find its general solution, (i) (2 marks) (a) use series command to express BesselJ(2,x) & BesselY(2,x) into **(ii)** their power series up to x^{11} (i.e., would appear with $0(x^{12})$). Then convert them into polynomials. (4 marks)

(b) (i) set
$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$$
 and $a_0 \neq 0$, utilize the power series method to find its indicial equations and thus find the values of

(ii)
$$s \& a_1$$
, (6 marks)
(ii) for $s = 2$, set $a_0 = 1$, use the recurrence relation to find the values of a_n up to $n = 8$. Show that this polynomial solution is linearly dependent to the independent solutions in (a)(ii). (9 marks)

for s = -2, set $a_0 = 1$, use the recurrence relation to find the values (iii) of a_n up to n=8. Show that this polynomial solution can not be found directly by power series method. (4 marks)

Question three

(a)	Given the following system of linear equations as :			
	[-10	$x_1 + 5 x_2 - 8 x_3 = 41$		
	$\begin{cases} 7 x_1 \end{cases}$	$-3x_2 + 6x_3 = -28$		
	$\int 6 x_1$	$-3x_2 + x_3 = -17$		
	(i) (ii)	solve them by Gauss elimination , solve them by Crammer's rule .	(4 marks) (4 marks)	
(b)	Given	Given the following system of first order differential equations as :		
	$\begin{cases} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{cases}$	$\frac{(t)}{t} = 9 x_1(t) - 3 x_2(t)$ $\frac{(t)}{t} = 4 x_1(t) - 4 x_2(t)$		
	(i)	Set $x_1(t) = X_1 e^{\lambda t}$ & $x_2(t) = X_2 e^{\lambda t}$ and deduce the following	lowing matrix	
		equation $A X = \lambda X$, where $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$.	(4 marks)	
	(ii)	Find the eigenvalues λ . For each eigenvalue find its eig	envector. (4 marks)	
	(iii)	Write down the general solutions of $x_1(t)$ & $x_2(t)$.	(2 marks)	
	(iv)	If the following initial conditions are given as $x_1(0) = 3 \& x_2(0) = -2$, find the specific solutions of	f	

 $x_1(t)$ & $x_2(t)$. Plot these $x_1(t)$ & $x_2(t)$ for t from 0 to 1 and show them in a single display. (7 marks)

Question four

Given a vector field as $\vec{F} = \vec{e}_x \ 2 \ x \ z + \vec{e}_y \ 5 \ x \ y + \vec{e}_z \ y^2$,

- (a) find the value of ∫_S F d s if the surface S is given as: S: 4x² + y² = 4 , 1≤z≤5 (Hint: set x = cos(t) & y = 2 sin(t) where 0≤t≤2π) (10 marks)
 (b) utilize the Divergence theorem, i.e., ∯_S F • d s ≡ ∭_V (∇ • F)dv, and find
- (b) utilize the Divergence theorem, i.e., $\oint_S \vec{F} \cdot d\vec{s} \equiv \iiint_V (\nabla \cdot \vec{F}) dv$, and find the value of $\oint_S \vec{F} \cdot d\vec{s}$ if the closed surface S is the cover surface of a box with $0 \le x \le 1, 0 \le y \le 2 \& 0 \le z \le 3$, (7 marks)
- (c) use the given \vec{F} to show that it satisfies the following vector identity : $\vec{\nabla} \times (\vec{\nabla} \times \vec{F}) \equiv \vec{\nabla} (\vec{\nabla} \cdot \vec{F}) - \vec{e}_x (\nabla^2 F_x) - \vec{e}_y (\nabla^2 F_y) - \vec{e}_z (\nabla^2 F_z)$. (8 marks)

Question five

Given the following non-homogeneous differential equation as :

$$\frac{d^2 y(t)}{dt^2} - 3 \frac{d y(t)}{dt} + 2 y(t) = f(t)$$

where f(t) is a periodic function with its period = 2, i.e.,

 $f(t) = f(t+2) = f(t+4) = f(t+6) = \dots, \text{ and its first period behaviour is given as}$ $f(t) = \begin{cases} t & \text{if } 0 \le t \le 1\\ -t+2 & \text{if } 1 \le t \le 2 \end{cases},$

- (a) (i) find the Fourier series representation of f(t) up to n = 10 and name this truncated series as $f_{10}(t)$, (7 marks)
 - (ii) find the particular solution of y(t) corresponding to $f_{10}(t)$ replacing f(t) in the given non-homogeneous differential equation, (9 marks)

differential equation, i.e., $\frac{d^2 y(t)}{dt^2} - 3 \frac{d y(t)}{dt} + 2 y(t) = 0$, then write down the general solution for the given non-homogeneous differential equation, (4 marks)

(ii) find the specific solution to the given non-homogeneous differential equation if the initial conditions are given as

$$y(0) = -5 \quad \& \quad \frac{d y(t)}{d t} \bigg|_{t=0} = 2.$$
 (5 marks)

Question six

A vibrating string of length L is fixed at its two ends, i.e., x = 0 & x = L. Its transverse displacement u(x,t) satisfies the following one-dimensional wave equation $\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u(x,t)}{\partial t^2} = 0 \quad \text{where } c \text{ is a constant related to the properties of the}$ given string,

- set u(x, y) = F(x) G(y) and utilize the separation of variable scheme to break (a) the above partitial differential equation into two ordinary differential equations. (4 marks)
- The general solution of the above partitial differential equation can be written as (b) $u(x,t) = \sum_{k \in I} u_k(x,t)$ $= \sum_{\forall k} (A_k \cos(kx) + B_k \sin(kx)) (C_k \cos(ckt) + D_k \sin(ckt))$

where A_k , B_k , C_k & D_k are arbitrary constants.

Applying two fixed end conditions, i.e., $u_k(0,t) = 0$ & $u_k(L,t) = 0$ and (i) one zero initial speed condition, i.e., $\frac{\partial u_k(x,t)}{\partial t} \bigg|_{t=0} = 0$, show that the

above general solution can be deduced to

$$u(x,t) = \sum_{n=1}^{\infty} E_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{cn\pi t}{L}\right) \text{ where } E_n \quad (n = 1, 2, 3, \dots)$$

are arbitrary constants. (8 marks) If c = 3, L = 10 and the initial position of (ii) the string is given as $u(x,0) = \begin{cases} 3 x & if \quad 0 \le x \le 2\\ 6 & if \quad 2 \le x \le 7\\ -x+10 & if \quad 7 \le x \le 10 \end{cases}$

find the values of E_1 , E_2 , E_3 , \cdots , E_6 . Then plot this specific

polynomial solutions of t = 0, t = 0.3 and t = 0.6 all for the same x = 0 to 10 and show them in a single display. range of (13 marks)

7