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P272 MATHEMATICAL METHODS FOR PHYSICIST 


Question one 

(a) 	 Given an arbitrary scalar and continuous function in cylindrical coordinates as f (P, tjJ ,z) , 
prove that Vx (V f(p,tjJ,z)) =0 . (6 marks) 

(b) 	 Given F= ex (3 y2)+ iF, (2 x z) + iF: (6 X2) and find the value of the following line 

integral 

2J
P F-. d'- if P1 : ( 1 , 1 , 3) , P2 : ( 3 , 9 , 3) and 
/'t,L 

(i) 	 L : a straight line from PI to P2 on z = 3 plane. ( 7 marks ) 
(li) 	 L : a parabolic path described by y = x 2 from PI to P2 on z = 3 plane. 

Compare this answer with that obtained in (b )(i) and comment on whether the given 

F is a conservative vector field or not. - ( 7 marks ) 
(iii) 	 Find Vx F . Does this resu}t agree with the comment you made in (b )(ii)? 

(5 marks) 
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Question two 

Given F=e ~2)+eo (3r2 sin(¢))+e (6r2 sin(e)) in spherical coordinates, r 	 z 

(a) 	 find the value of {F. d J if L is the circular closed loop of radius 5 on 

e= tr plane in counter clockwise sense as shown in the diagram below 
2 

(y:::s- f1=.!. A..)
.) 2.,'1"' 

I.e., 

L : (r =5 , 0 =; , 0<; ql:;; 2" & dl =+e, rsin(O) d ~ _r_=_5_&_0_=;~) ii, 5d ~ ) 
(8 marks) 

(b) 	 (i) find Vx F (7 marks) 

(ii) 	 then evaluate the value of JJs (V xF). d s where S is bounded by L gIven 

in (a) , i.e., 

0 =:; r =:; 5 , e=- ,0=:;¢=:;2tr & 
S : 

tr 	
d s= -,~',r sin(O) d r d ~ ]2 


[
 
_---"-2-+) - eo r d r d ¢ 

Compare this value with that obtained in (a) and make a brief comment. 
(10 marks) 
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Question three 

Given the following non-homogeneous differential equation as d
2 

x~t) + 2 d x(t) + 5 x(t) ::::: J(t) , 
dt dt 

where J(t) is a periodic jigsaw shape driving force of period 6 , i.e., 
J(t) ::::: J(t + 6) ::::: J(t + 12) ::::: ...... and plotted against its first three periods as shown below: 

10 

8 

6 

4 

2 10 12 14 16 18 

x 

i.e., its first period description is J(t)::::: 2 t Jor 0 ~ t ~ 6 
(a) express J(t) in terms its Fourier series, i.e., 

f(t) =ao + ~(a, cos( n;} b, sut;t)) ,and show that 

12 
ao ::::: 6 , a,,::::: 0 Jor n::::: 1,2,3,··· & b" = - - Jor n::::: 1,2,3,.·· (10 marks) 

. n1f 

6 6 
Note: =-1 1 J(t) dt , a" =.! r J(t) cos(n 7r t) d t anda o 6 t=O 3 Jt~O 3 

6
1 1 • (n1ft) flor n::::: 1 2 3 ..... .b" = J(t) SID - d t , , , 
3 t~O 3 

(b) find its particular solution x p (t) corresponding to 

(i) J(t) = 6 , and named as x~O)(t) , (3 marks) 

(ii) J(t)=- 12 Sin(n7rt)
n7r 3 

,andnamedas x~)(t) , in terms of n. (12 marks) 
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Question four 

(a) 	 Given the following 2-D Laplace equation in cylindrical coordinates as 
2 	 2 

\7 2 j(P,(J) =°= a j(p,(J) + 1 aj(P,(J) + _1 a j(P,(J) , set j(P,(J) =F(P)G«(J)
ap2 p ap p2 a(J2 

and use separation variable scheme to separate the above partial differential equation into 
two ordinary differential equations. ( 5 marks ) 

(b) 	 Given a Legendre's differential equation as : 

(1_x2)d2y(x)_2xdy(x)+20y(x)=o,set Y(X)=i:Qnxn+s & Qo:r!:O and
2

dx dx 	 n=O 

utilize the power series method, 
(i) 	 write down its indicial equations and show that s = 0 or 1 and Ql = 0 , 

(8 marks) 
(ii) 	 write down its recurrence relation. Set Qo 1 and use the recurrence relation to 

generate two independent solutions in power series form truncated up to Q6 term. 

Show that one of the independent solution is a polynomiaL ( 12 marks ) 
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Question five 

Two simple harmonic oscillators are joined by a spring with a spring constant kI2 as shown in the 
diagram below: 

The equations of motion for this coupled oscillator system ignoring friction are given as 

d 2 
Xl (t) 

m, 2 = - (k, + k12 ) X, (t) + kl2 X 2(t)
dt 


d 
2 


x2 (t) )
m2 2 =kl2 Xl (t) (k2 + kl2 X 2(t)

dt 

where X, & are horizontal displacements of m, & measured from their respective X 2 m2 

resting positions. 
N N N

Ifgiven m, = 1 kg , m2 = 2 kg , k, = 4 , k2 = 8 - & k\2 = 6 , 
m m m 

(a) set x,(t) =XI eifl)t & X2(t) = X 2 il»t , then the above given equations can be deduced to 

the following matrix equation A X =  ai X where 

A =(- 10 
3 

6 J 
-7 

&, X= (XI J 
X 2 

(5 marks ) 

(b) find the eigenfrequencies OJ ofthe given coupled system, (6 marks) 
(c) find the eigenvectors X of the given coupled system corresponding to each 

eigenfrequencies found in (b), ( 6 marks ) 
(d) find the normal coordinates of the given coupled system, ( 6 marks ) 
(e) write down the general solutions for XI (t) & x2 (t) . (2 marks ) 
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Useful informations 
The transfonnations between rectangular and spherical coordinate systems are : 

x =r sin(lJ) cos(;) 


y = r sin(lJ) sin(;) & 


z r cos(lJ) 


The transfonnations between rectangular and cylindrical coordinate systems are : 

x = p cos(;) 


y=psin(;) & 


z=z z=z 

Vf =et ~ of + i2 _1 of + i3 _1 a f 
hI oUI h2 aU2 h3 aU3 

V. F= 1 (O(FI ~ ~) + a(F2 hi h3) + a(F3 h,. h2») 
hi h2 h3 aUI aU2 aU3 

Vx F= (O(F3h3) _ O(F2 h2») + i2 (a(F) hi) _ a(F3 h3») 
~ ~ aU2 aU3 hi h3 aU3 aUI 

+~(a(F2 h2) a(F) h,.») 

h,. ~ aUl aU2 


where F=i l F) + i2 F2 + i3 F3 and 

(u) 	, U 2 , u3 ) represents (x, y, z) for rectangular coordinate system 

represents (p,q},z) for cylindrical coordinate system 

represents (r,(J,q}) for spherical coordinate system 

(e) ,e2 , e3 ) 	 represents (ex, e , e ) for rectangular coordinate system y z 

represents (ep ,e; ,eJ for cylindrical coordinate system 

represents (er , es ,e;) for spherical coordinate system 

represents (1 , 1 , 1) for rectangular coordinate system 

represents (1, P ,1) for cylindrical coordinate system 

represents (1 , r , r sin((J) ) for spherical coordinate system 


J~ sin(kt))dt = t CO:(kt) + s~~t) 


(k ):\d t sin(kt) cos(kt)J(" cos t 'J t = k + e 
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