UNIVERSITY OF SWAZILAND
95
FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS
MAIN EXAMINATION 2011/2012
TITLE OF PAPER : MATHEMATICAL METHODS FOR PHYSICISTS
COURSE NUMBER : P272
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVEQUESTIONS.EACH QUESTION CARRIES 25 MARKS.MARKS FOR DIFFERENT SECTIONS ARESHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEENGIVEN BY THE INVIGILATOR.

P272 MATHEMATICAL METHODS FOR PHYSICIST

Question one

(a) Given an arbitrary scalar and continuous function in cylindrical coordinates as $f(\rho, \phi, z)$, prove that $\vec{\nabla} \times(\vec{\nabla} f(\rho, \phi, z)) \equiv 0$.
(6 marks)
(b) Given $\vec{F}=\vec{e}_{x}\left(3 y^{2}\right)+\vec{e}_{y}(2 x z)+\vec{e}_{z}\left(6 x^{2}\right)$ and find the value of the following line integral

$$
\int_{P_{1}, L}^{P_{2}} \vec{F} \bullet d \vec{l} \quad \text { if } \mathrm{P}_{1}:(1,1,3), \mathrm{P}_{2}:(3,9,3) \text { and }
$$

(i) L : a straight line from P_{1} to P_{2} on $\mathrm{z}=3$ plane.
(ii) L : a parabolic path described by $y=x^{2}$ from P_{1} to P_{2} on $\mathrm{z}=3$ plane. Compare this answer with that obtained in (b)(i) and comment on whether the given \vec{F} is a conservative vector field or not.
(7 marks)
(iii) Find $\vec{\nabla} \times \vec{F}$. Does this result agree with the comment you made in (b)(ii)?
(5 marks)

Question two

Given $\vec{F}=\vec{e}_{r}\left(r^{2}\right)+\vec{e}_{\theta}\left(3 r^{2} \sin (\phi)\right)+\vec{e}_{z}\left(6 r^{2} \sin (\theta)\right)$ in spherical coordinates,
(a) find the value of $\oint \vec{F} \cdot d \vec{l}$ if L is the circular closed loop of radius 5 on $\theta=\frac{\pi}{2}$ plane in counter clockwise sense as shown in the diagram below

i.e.,
$L:\left(r=5, \theta=\frac{\pi}{2}, 0 \leq \phi \leq 2 \pi \quad \& d \vec{l}=+\vec{e}_{\phi} r \sin (\theta) d \phi \xrightarrow{r=5 \& \theta=\frac{\pi}{2}} \vec{e}_{\phi} 5 d \phi\right)$
(8 marks)
(b) (i) find $\vec{\nabla} \times \vec{F}$,
(ii) then evaluate the value of $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot d \vec{s}$ where S is bounded by L given in (a), i.e.,

Compare this value with that obtained in (a) and make a brief comment.
(10 marks)

Question three

Given the following non-homogeneous differential equation as $\frac{d^{2} x(t)}{d t^{2}}+2 \frac{d x(t)}{d t}+5 x(t)=f(t)$, where $f(t)$ is a periodic jigsaw shape driving force of period 6 , i.e., $f(t)=f(t+6)=f(t+12)=\cdots \cdots$ and plotted against its first three periods as shown below :

i.e., its first period description is $f(t)=2 t$ for $0 \leq t \leq 6$
(a) express $f(t)$ in terms its Fourier series, i.e.,
$f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi t}{3}\right)+b_{n} \sin \left(\frac{n \pi t}{3}\right)\right)$, and show that
$a_{0}=6 \quad, \quad a_{n}=0$ for $n=1,2,3, \cdots \quad \& \quad b_{n}=-\frac{12}{n \pi}$ for $n=1,2,3, \cdots$ (10 marks)
$\left(\begin{array}{ll}\text { Note }: a_{0}=\frac{1}{6} \int_{t=0}^{6} f(t) d t, & a_{n}=\frac{1}{3} \int_{t=0}^{6} f(t) \cos \left(\frac{n \pi t}{3}\right) d t \text { and } \\ b_{n}=\frac{1}{3} \int_{i=0}^{6} f(t) \sin \left(\frac{n \pi t}{3}\right) d t & \text { for } n=1,2,3, \cdots \cdots\end{array}\right)$
(b) find its particular solution $x_{p}(t)$ corresponding to
(i) $\quad f(t)=6 \quad$, and named as $x_{p}^{(0)}(t)$,
(3 marks)
(ii) $\quad f(t)=-\frac{12}{n \pi} \sin \left(\frac{n \pi t}{3}\right)$, and named as $x_{p}^{(n)}(t)$, in terms of $n \cdot(12$ marks)

Question four

(a) Given the following 2-D Laplace equation in cylindrical coordinates as
$\nabla^{2} f(\rho, \phi)=0=\frac{\partial^{2} f(\rho, \phi)}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial f(\rho, \phi)}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} f(\rho, \phi)}{\partial \phi^{2}}$, set $f(\rho, \phi)=F(\rho) G(\phi)$
and use separation variable scheme to separate the above partial differential equation into two ordinary differential equations.
(5 marks)
(b) Given a Legendre's differential equation as :
$\left(1-x^{2}\right) \frac{d^{2} y(x)}{d x^{2}}-2 x \frac{d y(x)}{d x}+20 y(x)=0$, set $\quad y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s} \quad \& \quad a_{0} \neq 0$ and utilize the power series method,
(i) write down its indicial equations and show that $s=0$ or 1 and $a_{1}=0$,
(8 marks)
(ii) write down its recurrence relation. Set $a_{0}=1$ and use the recurrence relation to generate two independent solutions in power series form truncated up to a_{6} term. Show that one of the independent solution is a polynomial.
(12 marks)

Question five

Two simple harmonic oscillators are joined by a spring with a spring constant k_{12} as shown in the diagram below :

The equations of motion for this coupled oscillator system ignoring friction are given as
$\left\{\begin{array}{l}m_{1} \frac{d^{2} x_{1}(t)}{d t^{2}}=-\left(k_{1}+k_{12}\right) x_{1}(t)+k_{12} x_{2}(t) \\ m_{2} \frac{d^{2} x_{2}(t)}{d t^{2}}=k_{12} x_{1}(t)-\left(k_{2}+k_{12}\right) x_{2}(t)\end{array}\right.$
where $x_{1} \& x_{2}$ are horizontal displacements of $m_{1} \& m_{2}$ measured from their respective resting positions.
If given $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}, k_{1}=4 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{2}=8 \frac{\mathrm{~N}}{\mathrm{~m}} \& k_{12}=6 \frac{\mathrm{~N}}{\mathrm{~m}}$,
(a) set $x_{1}(t)=X_{1} e^{i \omega t} \quad \& \quad x_{2}(t)=X_{2} e^{i \omega t}$, then the above given equations can be deduced to the following matrix equation $A X=-\omega^{2} X \quad$ where

$$
A=\left(\begin{array}{cc}
-10 & 6 \tag{5marks}\\
3 & -7
\end{array}\right) \quad \& \quad X=\binom{X_{1}}{X_{2}}
$$

(b) find the eigenfrequencies ω of the given coupled system,
(c) find the eigenvectors X of the given coupled system corresponding to each eigenfrequencies found in (b),
(d) find the normal coordinates of the given coupled system,
(e) write down the general solutions for $x_{1}(t) \& x_{2}(t)$.

Useful informations

The transformations between rectangular and spherical coordinate systems are :
$\left\{\begin{array}{c}x=r \sin (\theta) \cos (\phi) \\ y=r \sin (\theta) \sin (\phi) \\ z=r \cos (\theta)\end{array} \quad \& \quad\left\{\begin{array}{c}r=\sqrt{x^{2}+y^{2}+z^{2}} \\ \theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\ \phi=\tan ^{-1}\left(\frac{y}{x}\right)\end{array}\right.\right.$
The transformations between rectangular and cylindrical coordinate systems are :

$$
\begin{aligned}
& \left\{\begin{array} { c }
{ x = \rho \operatorname { c o s } (\phi) } \\
{ y = \rho \operatorname { s i n } (\phi) } \\
{ z = z }
\end{array} \quad \& \quad \left\{\begin{array}{c}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
z=z
\end{array}\right.\right. \\
& \vec{\nabla} f=\vec{e}_{1} \frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}}+\vec{e}_{2} \frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}}+\vec{e}_{3} \frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}}
\end{aligned} \begin{aligned}
& \vec{\nabla} \bullet \vec{F}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(F_{1} h_{2} h_{3}\right)}{\partial u_{1}}+\frac{\partial\left(F_{2} h_{1} h_{3}\right)}{\partial u_{2}}+\frac{\partial\left(F_{3} h_{1} h_{2}\right)}{\partial u_{3}}\right) \\
& \vec{\nabla} \times \vec{F}=\frac{\vec{e}_{1}}{h_{2} h_{3}}\left(\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{2}}-\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{3}}\right)+\frac{\vec{e}_{2}}{h_{1} h_{3}}\left(\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{3}}-\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{1}}\right) \\
& \quad+\frac{\vec{e}_{3}}{h_{1} h_{2}}\left(\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{1}}-\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{2}}\right)
\end{aligned}
$$

where $\vec{F}=\vec{e}_{1} F_{1}+\vec{e}_{2} F_{2}+\vec{e}_{3} F_{3} \quad$ and

$\left(u_{1}, u_{2}, u_{3}\right)$	represents	(x, y, z)	for rectangular coordinate system
	represents	(ρ, ϕ, z)	for cylindrical coordinate system
	represents	(r, θ, ϕ)	for spherical coordinate system
$\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$	represents	$\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right)$	for rectangular coordinate system
	represents	$\left(\vec{e}_{\rho}, \vec{e}_{\phi}, \vec{e}_{z}\right)$	for cylindrical coordinate system
	represents	$\left(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\phi}\right)$	for spherical coordinate system
$\left(h_{1}, h_{2}, h_{3}\right)$	represents	$(1,1,1)$	for rectangular coordinate system
	represents	($1, \rho, 1$)	for cylindrical coordinate system
	represents	$(1, r, r \sin (\theta))$	for spherical coordinate system
$\int(t \sin (k t)) d t=-t \cos (k t)$			
$\int(t \sin (k t)) d t=-\frac{1}{k}+\frac{\operatorname{la}^{2}}{k^{2}}$			
$\int(t \cos (k t)) d t=\frac{t \sin (k t)}{k}+\frac{\cos (k t)}{k^{2}}$			
	k^{2}		

