UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2012
TITLE OF PAPER : ELECTRONICS I

COURSE NUMBER : P311
TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS
EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

OUESTION 1

(a) Consider an n-p-n transistor connected in the common-emitter configuration. Sketch a circuit that you would use to measure the characteristics of the transistor. (2 marks)
(b) Sketch the output characteristics of an n-p-n transistor and show the active, saturation, and cutoff regions.
(4 marks)
(c) The element values in the circuit shown in Fig. 1 are $R_{1}=150 \mathrm{k} \Omega, R_{2}=37.5 \mathrm{k} \Omega$, $R_{C}=2 \mathrm{k} \Omega$ and $R_{E}=3 \mathrm{k} \Omega$. The transistor has $h_{F E}=100$ and negligible reverse saturation current. $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.

Calculate I_{C} and V_{CE} when $V_{C C}=9 \mathrm{~V}$.
(d) A C-E amplifier is based on an $n-p-n$ silicon transistor with the following parameters: $h_{i e}=5 k \Omega, \quad h_{f e}=250, h_{o e}=2.0 \times 10^{-4}$ Siemen and $h_{r e}=10^{-5}$.

The collector resistor is $\mathrm{R}_{\mathrm{C}}=2 k \Omega$.
With the aid of a small signal model of the amplifier,
(i) Derive the exact (rather than approximate) expression of the current gain, A_{i} of the amplifier
(ii) Calculate the exact value of the current gain.

Fig. 1

OUESTION 2

(a) With reference to a junction field effect transistor, define the following terms:
(i) Mutual conductance
(2 marks)
(ii) Drain resistance.
(b) Plot the mutual characteristic of a JFET with the aid of the equation below for

$$
\begin{aligned}
& I_{D S S}=20 \mathrm{~mA} \text { and } V_{P}=-2 \mathrm{~V} . \\
& I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}
\end{aligned}
$$

(5 marks)
(c) Sketch the circuit of a self-biasing common-source amplifier which utilises an p-channel junction field effect transistor.
(d) With the aid of a small signal model, derive an expression for the voltage gain of a common-source amplifier.
(e) The drain characteristics shown on page 7 are based on the JFET amplifier illustrated in Fig. 2 below. The supply voltage V_{DD} is 30 V and $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA}$. Use these drain characteristics to find R_{D}.
(4 marks)

Fig. 2

QUESTION 3

(a) Define
(i) donor impurities in semiconductors; (2 marks)
(ii) acceptor impurities in semiconductors.
(b) Explain, with the aid of simple diagrams, how n-type silicon is produced. (6 marks)
(c) Show (in two dimensions) the crystal structure of silicon containing a donor impurity atom. Explain, briefly, the effect of donor impurities on the conductivity of the material. (5 marks)
(d) Sketch and comment on the energy-band diagrams representing
(i) n-type silicon that is produced using phosphorous and show the donor energy level;
(ii) p-type silicon that is produced using boron and show the acceptor energy level. (5 marks)
Label both diagrams.

QUESTION 4

(a) Write the Shockley equation for a $p-n$ diode and state the meaning of each symbol. (6 marks)
(b) Plot the diode characteristics for germanium and silicon on the same graph and show the turn-on voltage for each of the semiconductors.
(2 marks)
(c) The current, I_{D} in the circuit shown in Fig. 3.1 and the diode voltage, V_{D} can be estimated, theoretically, with the aid of the diode characteristics in Fig. 3.2. Given that $V_{A A}=0.8 \mathrm{~V}$ and $R=10 \Omega$,
(i) Use the diode characteristics to find approximate values of the diode current and the diode voltage.
(7 marks)
(ii) If $V_{A A}$ is increased from 0.8 V to 1 V , what will be the new value of R when the diode current is to remain at the value obtained in (i) above?
(d) Consider a Zener diode with a Zener voltage of 5.2 V and a maximum power rating of 250 mW . The diode is used in the simple regulator circuit illustrated in Fig. 3.3 to provide a maximum load current of 12 mA . The voltage supply varies from 9 V to 11 V .

Calculate the value of the series resistance, R_{S} required for this circuit. (5 marks)

Fig. 3.1

Fig. 3.3

Fig. 3.2

OUESTION 5

(a) (i) What type of circuit is referred to as a source follower?
(ii) Show that the output resistance of a source follower is given by

$$
r_{\text {out }}=\frac{1}{g_{m}}
$$

where g_{m} represents the transconductance of the JFET used.
(b) The equations below provide information about the relationship between the currents and voltages associated with a difference amplifier.

$$
\begin{aligned}
& g_{m} v_{i n}(1)=i_{d 2} g_{m} R_{s}+i_{d 1}\left(1+g_{m} R_{s}\right) \\
& g_{m} v_{i n}(2)=i_{d 1} g_{m} R_{s}+i_{d 2}\left(1+g_{m} R_{s}\right)
\end{aligned}
$$

where g_{m} is the transconductance;
$\mathrm{v}_{\mathrm{in}}(1)$ and $\mathrm{v}_{\mathrm{in}}(2)$ are the input voltages to transistors T_{1} and T_{2} respectively; $\mathrm{i}_{\mathrm{d} 1}$ and $\mathrm{i}_{\mathrm{d} 2}$ are the drain currents associated with transistors T_{1} and T_{2} respectively; R_{s} is the source resistance.
(i) Draw the circuit diagram of a difference amplifier and label it; (4 marks)
(ii) Show that $i_{d 1}=-i_{d 2}$. Assume that R_{s} is large.
(iii) Show that the output voltages are equal in magnitude but out of phase by 180°.

STUDENT NUMBER:

PLEASE SUBMIT THE GRAPH BELOW TOGETHERWITH YOUR ANSWERSHEETS

