UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCEDEPARTMENT OF PHYSICSMAIN EXAMINATION 2011/2012
TITLE OF PAPER : CLASSICAL MECHANICS
COURSE NUMBER : P320
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVEQUESTIONS.EACH QUESTION CARRIES 25MARKS.MARKS FOR DIFFERENT SECTIONSARE SHOWN IN THE RIGHT-HANDMARGIN.

THIS PAPER HAS NINE PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P320 CLASSICAL MECHANICS

Question one

(a) Given the following definite integral of $J(\alpha)=\int_{x_{1}}^{x_{2}} f\left(y(\alpha, x), y^{\prime}(\alpha, x), y^{\prime \prime}(\alpha, x) ; x\right) d x$, where the varied integration path is $y(\alpha, x)=y(x)+\alpha \eta(x), \eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and $\left.\frac{d \eta(x)}{d x}\right|_{x=x_{1}}=\left.\frac{d \eta(x)}{d x}\right|_{x=x_{2}}=0 \quad$ as shown in the following diagram :

Using the extremum condition for $J(\alpha)$, i.e., $\left.\frac{\partial J(\alpha)}{\partial \alpha}\right|_{a=0}=0$, to deduce that f along the extremum path, i.e., $f\left(y(x), y^{\prime}(x), y^{\prime \prime}(x) ; x\right)$, satisfies the following equation:

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial f}{\partial y^{\prime \prime}}\right)=0 \tag{13marks}
\end{equation*}
$$

(b) For a certain dynamical system the kinetic energy T and potential energy V are given by $T=\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{1} \dot{q}_{2}+\dot{q}_{2}^{2}\right)$
$V=\frac{3}{2} q_{2}^{2}$
where q_{1}, q_{2} are the generalized coordinates.
(i) Write down Lagrange's equations of motion.
(ii) Deduce an expression for q_{2} in terms of t.

Question two

(i) Show that for two dimensional motion of a particle of mass m with a constant acceleration α along $+x$ direction and a zero acceleration along y direction the Hamiltonian is given by the expression,
$H=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}-m \alpha x$
(ii) From the definition of the Poisson brackets, i.e., $[u, v] \equiv \sum_{\alpha}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)$, evaluate $[x, H]$ and $\left[p_{x}, H\right]$.
(iii) For an equation of the type $\frac{d u}{d t}=[u, H]$ the specific solution of $u(t)$ is given by the following series expansion
$\left.\left.u(t)=u_{0}+[u, H]_{0} t+[[u, H], H]_{0} \frac{t^{2}}{2!}+[\llbracket u, H], H\right], H\right]_{0} \frac{t^{3}}{3!}+\cdots \cdots \cdots$
where subscript 0 denotes the initial conditions at $t=0$.
Use the above relation to show that for the given Hamiltonian, the specific solution of $x(t)$ is given by
$x(t)=x_{0}+\frac{p_{x, 0}}{m} t+\frac{\alpha}{2} t^{2}$
where x_{0} and $p_{x, 0}$ are the initial x-position and x-momentum respectively.
(11 marks)

Question three

(a) Given the Lagrangian for the two-body central force system as :
$L=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-U(r)$
where μ is the reduced mass of the system and (r, θ) are polar coordinates of the motion plane with its origin at the center of mass of the two-body system.
(i) Write down the Lagrange's equation for θ and show that the angular momentum l is conserved, i.e., deduce that
$\dot{\theta}=\frac{l}{\mu r^{2}}$
(1) where l is a constant.
(3 marks)
(ii) Write down the Lagrange's equation for r, with eq.(1) inserted, deduce that $\mu \ddot{r}-\frac{l^{2}}{\mu r^{3}}+\frac{d U(r)}{d r}=0$
(3 marks)
(iii) Multiply eq.(2) by $d r$ and use $\ddot{r} d r=\frac{d \dot{r}}{d t} d r=d \dot{r} \frac{d r}{d t}=\dot{r} d \dot{r}=d\left(\frac{\dot{r}^{2}}{2}\right)$ to show that the total energy $E(\equiv T+U)$ is conserved .
(b) If an earth satellite of 100 kg mass is having a pure tangential speed
$v_{\theta}(=r \dot{\theta})=10,000 \frac{\mathrm{~m}}{\mathrm{~s}}$ at its near-earth-point 600 km above the earth surface,
(i) calculate the values of l and E of this satellite,
(ii) calculate the values of the eccentricity ε and show that the orbit is an elliptical orbit. Also calculate its period.
(7 marks)

Question four

A simple pendulum of mass m and length l, hangs from a supporting block of mass $2 m$ which can move along a horizontal line (in the plane of the pendulum), and is restricted by a spring with a spring constant k as shown below

(i) For small θ, i.e., $\left(\sin (\theta) \approx \theta\right.$ and $\left.\cos (\theta) \approx 1-\frac{\theta^{2}}{2}\right)$, show that the Lagrangian for the system can be expressed as:

$$
L=\frac{3}{2} m \dot{x}^{2}+\frac{1}{2} m l^{2} \dot{\theta}^{2}+m l \dot{x} \dot{\theta}-\frac{1}{2} m g l \theta^{2}-\frac{1}{2} k x^{2}
$$

where the zero gravitational potential is set at the equilibrium position.
(6 marks)
(ii) Write down the equations of motion and deduce that

$$
\left\{\begin{array}{l}
\ddot{x}=-\left(\frac{k}{2 m}\right) x+\left(\frac{g}{2}\right) \dot{\theta} \tag{10marks}\\
\ddot{\theta}=\left(\frac{k}{2 m l}\right) x-\left(\frac{3 g}{2 l}\right) \theta
\end{array}\right.
$$

(iii) Set $x=\hat{X}_{1} e^{i \omega t}$ and $\theta=\hat{X}_{2} e^{i \omega t}$ (where \hat{X}_{1} and \hat{X}_{2} are constants) and deduce from the equations in (ii) the matrix equation $-\omega^{2} X=A X \quad$ where

$$
X=\binom{\hat{X}_{1}}{\hat{X}_{2}} \text { and } A=\left(\begin{array}{cc}
-\left(\frac{k}{2 m}\right) & \left(\frac{g}{2}\right) \tag{4marks}\\
\frac{k}{2 m l} & -\left(\frac{3 g}{2 l}\right)
\end{array}\right)
$$

(iv) Show that the eigenfrequencies ω of this coupled system satisfies the following equation

$$
\begin{equation*}
\omega^{4}-\left(\frac{k}{2 m}+\frac{3 g}{2 l}\right) \omega^{2}+\left(\frac{k g}{2 m l}\right)=0 \tag{5marks}
\end{equation*}
$$

Question five

(a) Two set of Cartesian coordinate axes are having the same origins and z-axis. The non-prime system (referred to as "rotating" system) is rotating with an angular velocity $\vec{\omega}=\vec{e}_{z^{\prime}} \dot{\theta}$ about the prime system (referred as "fixed" system) as shown below:

For any vector field \vec{F} decomposed into the above two-set of cartesian components, i.e., $\vec{F}=\vec{e}_{x} F_{x}+\vec{e}_{y} F_{y}+\vec{e}_{z} F_{z}=\vec{e}_{x^{\prime}} F_{x^{\prime}}+\vec{e}_{y^{\prime}} F_{y^{\prime}}+\vec{e}_{z^{\prime}} F_{z^{\prime}}$, show that $\left(\frac{d \vec{F}}{d t}\right)_{\text {fixed }}=\left(\frac{d \vec{F}}{d t}\right)_{\text {routing }}+\vec{\omega} \times \vec{F}$ where
$\left(\frac{d \vec{F}}{d t}\right)_{\text {fixed }}=\vec{e}_{x^{\prime}} \frac{d F_{x^{\prime}}}{d t}+\vec{e}_{y^{\prime}} \frac{d F_{y^{\prime}}}{d t}+\vec{e}_{z^{\prime}} \frac{d F_{z^{\prime}}}{d t}$ and
$\left(\frac{d \vec{F}}{d t}\right)_{\text {rotuting }}=\vec{e}_{x} \frac{d F_{x}}{d t}+\vec{e}_{y} \frac{d F_{y}}{d t}+\vec{e}_{z} \frac{d F_{z}}{d t}$
(12 marks)
(Hint : $\vec{e}_{x}=\vec{e}_{x^{\prime}} \cos (\theta)+\vec{e}_{y^{\prime}} \sin (\theta), \vec{e}_{y}=-\vec{e}_{x^{\prime}} \sin (\theta)+\vec{e}_{y^{\prime}} \cos (\theta)$ and $\vec{e}_{z}=\vec{e}_{z^{\prime}}$)

Question five (continued)

(b)

If a particle is projected vertically upward with an initial speed v_{0} to a height h above a point on the earth's surface at northern latitude λ, show that it strikes the ground at a point $\frac{4}{3} \omega \cos (\lambda) \sqrt{\frac{8 h^{3}}{g}}$ to the west. Neglect air resistance and only consider small vertical height.
(Hint:
$\vec{a}_{e f f} \approx \vec{e}_{:}(-g)-2 \vec{\omega} \times \vec{v}_{r}, \vec{v}_{r} \approx \vec{e}_{z}\left(v_{0}-g t\right), \vec{\omega}=\vec{e}_{x}(-\omega \cos (\lambda))+\vec{e}_{z}(\omega \sin (\lambda))$
and $v_{0}=\sqrt{2 g h}, \quad($ total time for the given motion $)=\frac{2 v_{0}}{g}$

Useful informations

$$
\begin{aligned}
& V=-\int \vec{F} \cdot d \vec{l} \text { and } d \vec{l}=\vec{e}_{x} x+\vec{e}_{y} y+\vec{e}_{z} z \text { in cartesian } \\
& L=T-V=L\left(q_{\alpha}, \dot{q}_{\alpha} ; t\right) \\
& p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}} \\
& \dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}} \\
& H=\sum_{\alpha} p_{\alpha} \dot{q}_{\alpha}-L=H\left(q_{\alpha}, p_{\alpha} ; t\right) \xrightarrow{\text { it } \frac{\partial H}{\partial t}=0} T+V \\
& \dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \\
& \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}} \\
& {[u, v] \equiv \sum_{\alpha}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)} \\
& G=6.673 \times 10^{-11} \frac{N m^{2}}{k g^{2}}
\end{aligned}
$$

radius of earth $r_{E}=6.4 \times 10^{6} \mathrm{~m}$
mass of earth $m_{E}=6 \times 10^{24} \mathrm{~kg}$
earth attractive potential $\equiv-\frac{k}{r} \quad$ where $\quad k=G m m_{E}$
$\varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}} \quad\{(\varepsilon=0$, circle $),(0<\varepsilon<1$, ellipse $),(\varepsilon=1$, parabola $), \cdots\}$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \approx m_{1}$ if $\quad m_{2} \gg m_{1}$
For elliptical orbit,i.e., $0<\varepsilon<1$, then $\left\{\begin{array}{l}\text { semi-major } a=\frac{k}{2|E|} \\ \text { semi-minor } b=\frac{l}{\sqrt{2 \mu|E|}} \\ \text { period } \tau=\frac{2 \mu}{l}(\pi a b)\end{array}\right.$
$I=\left(\begin{array}{ccc}\sum_{\alpha} m_{\alpha}\left(x_{\alpha, 2}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 2} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 1} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 3} \\ -\sum_{\alpha}^{2} m_{\alpha} x_{\alpha, 3} x_{\alpha, 1} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 2} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 2}^{2}\right)\end{array}\right)$
$\vec{F}_{e f f}=\vec{F}-m \ddot{\vec{R}}_{f}-m \dot{\bar{\omega}} \times \vec{r}-m \vec{\omega} \times(\vec{\omega} \times \vec{r})-2 m \vec{\omega} \times \vec{v}_{r} \quad$ where
$\vec{r}^{\prime}=\vec{R}+\vec{r} \quad$ and
\vec{r}^{\prime} refers to fixed(inertial system)
\vec{r} refers to rotatinal(non-inertial system) rotates with $\vec{\omega}$ to \vec{r}^{\prime} system
$\vec{R} \quad$ from the origin of \vec{r} 'to the origin of \vec{r}
$\vec{v}_{r}=\left(\frac{d \vec{r}}{d t}\right)_{r}$

