

UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2011/2012

TITLE OF THE PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR OUT THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED APPENDIX WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

181

General Data:

1 unified mass unit (u) =1.6605 ×10⁻²⁷kg = 931.5 MeV/ c^2 Planck's constant $h = 6.63^{-34}$ Js Boltmann's constant $k = 1.38 \times 10^{-23} J K^{-1}$ Avogardo's number 6.022×10^{23} (g-mole)⁻¹ speed of light (vacuum) $c = 3.0 \times 10^8$ m/s electron mass = 9.11×10^{-31} kg = 5.4858^{-4} u = 0.511 MeV/ c^2 neutron mass = 1.6749×10^{-27} kg = 1.008665 u = 939.573 MeV/ c^2 proton mass = 1.6726×10^{-31} kg =1.0072765 u =938.280 MeV/ c^2 1 year = 3.156^7 s nuclear radius, R $\cong r_0 A^{1/3}$, where $r_0 = 1.2$ fm

The table of nuclear properties is provided in the following page.

Nuclide	Z	A	Atomic mass (u)	I^{π}	Abundance or Half life
H	1	1	1.007825	$1/2^{+}$	99.985%
He	2	4	4.002603	0+	99.99986%
Li	3	7	7.016003	$3/2^{-}$	92.5%
Be	4	11	11.021658	$1/2^{+}$	$13.8s(\beta^{-})$
В	5	11	11.009305	$3/2^{-}$	80.2%
С	6	12	12.000000	0+	99.89%
N	7	15	15.000109	$1/2^{-}$	0.366%
Ν	7	18	18.014081	1-	0.63 s
0	8	15	15.003065	$1/2^{-}$	122 s (e)
0	8	16	15.994915	0+	99.76%
0	8	18	17.999160	0+	0.204%
F	9	18	18.000937	1+	110.0 min
Ne	10	20	19.992436	0+	90.51%
Ne	10	22	21.991383	0+	9.33%
Na	11	22	21.994434	3+	2.60 yrs
Mg	12	22	21.000574	0+	3.86 s
Al	13	27	26.981539	$5/2^{+}$	100.00 %
Si	14	22	29.973770	0+	3.10%
Si	14	32	31.974148	0+	105y
Р	15	30	29.978307	1+	2.50min
P	15	32	31.971725	1+	14.3d
S	16	32	31.972071	0+	95.02%
Cl	17	37	36.965903	$3/2^{+}$	24.23%
Ar	18	37	36.966776	$3/2^{+}$	35.0 d
K	19	37	36.973377	$3/2^{-}$	1.23 s
Ca	20	43	42.958766	$7/2^{-}$	0.135%
Ca	20	47	46.954543	$7/2^{-}$	4.54 d (β ⁻)
Sc	21	47	46.952409	$7/2^{-}$	3.35 d (β ⁻)
Fe	26	56	55.934439	0+	91.8%
Fe	26	60	59.934078	0+	1.5My
Co	27	60	59.933820	5+	5.27y
Ni	28	60	59.930788	0+	26.1%
Ni	28	64	63.927968	0+	0.91%
Ni	28	65	64.930086	$5/2^{-}$	$2.52 h (\beta^-)$
Cu	29	63	62.929599	$3/2^{-}$	69.2%
Cu	29	64	63.929800	1+	12.7 h
Cu	29	65	64.927793	3/2+	30.8%
Zn	30	64	63.929145	0+	48.6%
Ru	44	104	103.905424	0+	18.7%
Ru	44	105	104.907744	$3/2^{+}$	4.44h (β^{-})
Pd	46	105	104.905079	$5/2^{+}$	22.2%
Cs	55	137	136.907073	$7/2^{+}$	30.2 y (β ⁻)
Ba	56	137	136.905812	$3/2^{+}$	11.2%
Tl	81	203	202.972320	$1/2^{+}$	29.5%
Os	76	191	190.960920	9/2-	15.4 d (β ⁻) %
Ir	77	191	190.960584	$3/2^{+}$	37.3%
Au	79	199	198.968254	$3/2^{+}$	16.8%

(a) The lowest energy levels in the Shell Model, in order of increasing energy are

 $1s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}, 1f_j, \dots$

(i) What are the possible values of j for the 1f levels.

[2 marks]

(ii) What is the value of j for the lowest 1f level? Justify your answer.

[2 marks]

(iii) Determine the spin and parity of the ground state of both the $\frac{40}{20}Ca$ and $\frac{41}{20}Ca$ nuclides.

[8 marks]

(iv) In the Shell model, a 'spin-orbit' interaction splits all the energy levels except the 's-type' levels. Why do the s-type levels remain unsplit?

[1 marks]

(b) The low-lying energy levels of ${}^{13}C$ are the ground state $(\frac{1}{2}^{-})$; 3.09MeV $(\frac{1}{2}^{+})$; 3.68MeV $(\frac{3}{2}^{-})$ and 3.85MeV $(\frac{5}{2}^{+})$. Interpret these states according to the shell-model.

[12 marks]

(a) Using the observation the nuclear radius $r = r_0 A^{1/3}$, estimate the average mass density of a nucleus.

[3 marks]

(b) Describe *briefly* the 'origin' of the various terms in the Semi-Empirical Mass Formula. [NB: detailed mathematical expressions and values of constants are not required].

[5 marks]

(c) Suggest a simple reason why the ${}_{6}^{12}C$ nuclide has a higher binding energy (i.e. more stable) than ${}_{7}^{12}N$, even though they are isobars?

[3 marks]

- (d) Given that the stable sodium isotope is $^{23}_{11}Na$, what type of radioactivity would you expect from
 - (i) ²²Na

ł

.

(ii) ²⁴Na

[6 marks]

(e) Supply the missing particles in the following processes

(i) $\bar{\nu} + {}^{3}He \rightarrow$	
(ii) $e^- + {}^8B \rightarrow$	[2 marks]
() 40 72	[2 marks]
(iii) $\stackrel{\omega}{\sim} K \rightarrow \nu$	[2 marks]
(iv) $\nu + {}^{12}C \rightarrow$	[2 marks]

- (a) A by-product of some fission reactors is ${}^{239}Pu$ which is an α -emitter with a half-life of 24,120 years. Consider 1 kg of ${}^{239}Pu$ at t=0.[Atomic mass of ${}^{239}Pu$ = 239.052163u].
 - (i) What is the number of ^{239}Pu nuclei at t=0?
 - (ii) What is the initial activity?
 - (iii) For how long would you need to store Plutonium until it has decayed to a safe activity level of 0.1 Bq?
- (b) Radionuclides are useful sources of small amounts of energy in space vehicles, remote communication stations, heart pacemakers etc. Calculate the power available in Watts from a gram of ^{210}Po , an α -emitter with an energy of 5.30 MeV and a half life of 138 days. [Atomic mass of $^{210}_{84}Po = 209.982848$ u].

(c) In stars slightly more massive than the Sun, hydrogen burning is carried out mainly by the CNO cycle, whose first step is $p + {}_{6}^{12} C \rightarrow {}_{7}^{13} N + \gamma$. Estimate the energy of the gamma (in MeV), assuming the two initial nuclei are essentially at rest. Justify any simplifying assumptions you make. [Atomic masses: ${}_{1}^{1}H = 1.007825u$, ${}_{6}^{12}C = 12.00000u$, ${}_{7}^{13}N = 13.005739u$].

[4 marks]

- (d) Consider the nuclear fission reaction $n + {}^{235}_{92}U \rightarrow {}^{141}_{56}Ba + {}^{92}_{36}Kr + 3n$.
 - (i) Calculate the energy released (in MeV) in the reaction. [Atomic masses: ${}^{235}_{92}U = 235.043915u$, ${}^{141}_{56}Ba = 140.9139u$, ${}^{92}_{36}Kr = 91.8973u$. The neutron mass is 1.008665u].

[4 marks]

(ii) You wish to run a 1000MW power reactor using $\frac{235}{92}U$ fission. How much $\frac{235}{92}U$ is required for one day's operation?

[5 marks]

6

[2 marks]

2 marks

[3 marks]

5 marks

- (a) For the following γ transitions, give all permitted multipoles and indicate which multipole might be most intense in the emitted radiation.
 - (i) $\frac{9^{-}}{2} \rightarrow \frac{7}{2}^{+}$ (ii) $\frac{1}{2}^{-} \rightarrow \frac{7}{2}^{-}$ (iii) $1^{-} \rightarrow 2^{+}$ (iv) $4^{+} \rightarrow 2^{+}$ (v) $\frac{11}{2}^{-} \rightarrow \frac{3}{2}^{+}$

[5 marks]

(b) Explain why a transition from 0^+ to 0^+ will not allow any γ radiation.

[2 marks]

(c) An even-Z, even-N nucleus has the following sequence of levels above its 0⁺ ground state:

 $2^{+}(89keV), 4^{+}(288keV), 6^{+}(585keV), 0^{+}(1050keV), 2^{+}(1129keV)$

Draw an energy level diagram and show all reasonably probable γ transitions and their dominant multipole assignments.

[10 marks]

(d) Given the following radio-nuclides:

 $^{60}_{27}Co, \ ^{32}_{15}P$

Show by actual calculation, which of these nuclides will decay by

(i) β^+ emission

(ii) electron capture

[4 marks]

[4 marks]

.

(a) Write brief notes on the following instruments	
(i) Geiger-muller counter	
(ii) Scintillation detector	
	[6 marks]
(b) Discuss three modes by which a photon can interact with matter.	
	[6 marks]
(c) Discuss the essential features of the strong nuclear force	
	[4 marks]
(d) Show that the decay $n \to p + e^-$ cannot conserve angular momentum.	
	[3 marks]
(e) Write short note on the following	
(i) Internal conversion	
(ii) Bremsstrahlung	
	[6 marks]

.