UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION: 2011/2012
TITLE OF THE PAPER: COMPUTATIONAL METHODS-II
COURSE NUMBER: P482
TIME ALLOWED:
SECTION A: ONE HOUR
SECTION B: TWO HOURS

INSTRUCTIONS:
THE ARE TWO SECTIONS IN THIS PAPER:

- SECTION A IS A WRITTEN PART. ANSWER THIS SECTION ON THE ANSWER BOOK. IT CARRIES A TOTAL OF 30 MARKS.
- SECTION B IS A PRACTICAL PART WHICH YOU WILL WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. IT CARRIES A TOTAL OF 70 MARKS.

Answer any two questions from section A and all the questions from section \mathbf{B}.
Marks for different sections of each Question are shown in the right hand margin.

THE PAPER HAS 7 PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Section A

Question 1

(a) Consider the statistical experiment of flipping an unbiased coin. Write down a maple code that generates a list that contains the outcome of N flips of the unbiased coin using the Maple random number generator. Define your symbols appropriately.
[4 mark]
(b) Consider a random walker in two dimensions on a square lattice. The walker starts at the origin $(0,0)$ and moves non-stop for M steps.
(i) Write an algorithm to simulate the movement of the random walker. Assume the random walker takes a unit step at each instant and that he/she moves up or down, left or right with equal probabilities.
[6 marks]
(ii) Explain how would you utilize this program to show that the mean square displacement of a random walker is proportional to the duration of the walk.
[3 marks]
(iii) How does the process of random walker relates to the theory of diffusion?

Question 2

(a) Use the Euler method to solve

$$
\frac{d N(t)}{d t}=-N(t)
$$

with $N(0)=1$.
(i) Determine $\mathrm{N}\left(t_{i}\right)$ after i steps of size Δt. What is the exact solution?
[4 marks]
(ii) For $\Delta t=0.5,1.5,3$ calculate $N\left(t_{i}\right)$ for $i=0 \ldots 4$. Sketch $N\left(t_{i}\right)$ vs t_{i}. Which values of Δt is the method stable.
(b) Write a difference formula corresponding to the following equations
(i) $\frac{\partial}{\partial t} \rho(x, t)=\frac{\partial^{2}}{\partial x^{2}} \rho(x, t)+h \rho(x, t)$
(ii) $\frac{d}{d t} v(t)=g y(t)+A \sin (\omega t)$

Question 3

(a) A continuous voltage signal $V(t)$ is measured at a time step of Δt for N times.
(i) What is the period T of the measurement.
[1 mark]
(ii) Given that the signal is periodic, what is the highest frequency of the signal can be resolved from the recorded data. Support your answer.
(b) Sketch the power spectrum of the following signals
(i) $D_{1}(t)=1.0+\sin (t)$
(ii) $D_{2}(t)=3 \sin (t)+2 \sin (3 t)+\sin (5 t)$
(iii) $D_{3}(t)=\sin ^{2}(t)$
(c) Write a Maple script that constructs the signal

$$
g\left(t_{i}\right)=1.0+\exp \left(2 \pi t_{i}\right)+r_{i}
$$

where $t_{i}=i \cdot \Delta t$ for $i=0 . . L$ and r_{i} is a noise term that can be generate using uniformly distributed random numbers with an amplitude $\left|r_{i}\right|=0.1$.

Section B

Question 4

A radioactive sample contains N_{0} radioactive nuclei at $t=0$. The decay rate of the radioactive nuclei is $\lambda=0.27 \times 10^{6} s^{-1}$. Imagine that the activity of the sample was measure from $t=0$ upto $20 \mu s$ at time intervals of $1 \mu s$. Utilize the pseudo-code below to simulate the radioactive decay experiment and to answer the questions below.
(a) Using your simulation show that for a large number N_{0} the number of radioactive nuclei $N(t)$ decays exponential with time.
(b) Compare plots of $\ln N(t)$ versus t with different values of N_{0}. Explain your observations.
[10 marks]
(c) Explain in your own words how a process that is spontaneous and random at its very heart can lead to exponential decay.
[5 marks]
A pseudocode for simulating the decay process is simple:

Initialization of parameters:

$N[0]$! the initial number of radioactive nuclei.
$\lambda!$ decay rate
dt! discrete time step, for each interval dt we count the number of nuclei that have decay.
$p:=\lambda * d t$!probability that a radioactive nucleus after a timestep $d t$.
$T=$ Period $/ d t!$ number of measurement conducted (number of iterations)
Implementation stage:
$>$ for j from 0 to $T-1$ do
$>$ if $(N[j]>0)$ then \# the simulation stops when all have decayed.
$>d N[j]:=0$;
$>$ for i from 1 to $N[j] d o$
$>r[i]:=$ stats(random, uniform]();
$>$ if $(r[i]<p)$ then
$>d N[j]:=d N[j]+1 ;$
\# number of decays at given timestep. > end if:
$>$ end do;
$>N[j+1]:=N[j]-d N[j] ;$
$>$ end if;
$>$ end do;

Outputs:

$[t, N[t]],[t, \ln (N[t])]$, etc...!

Question 5

The dynamics of a charged particle in a magnetic field is described by Newton's second law:

$$
\frac{d \mathbf{v}}{d t}=\frac{q}{m} \mathbf{v} \times \mathbf{B}-\frac{\gamma}{m} \mathbf{v}
$$

where \mathbf{B} is the magnetic field, γ represent the coefficient of a damping force, m and q corresponds to the mass and the charge of the particle, respectively.
(a) Uniform field. When \mathbf{B} is in the z-direction, then the dynamics are given by four equation:

$$
\begin{aligned}
\frac{d x(t)}{d t} & =v_{x}(t) \\
\frac{d y(t)}{d t} & =v_{y}(t) \\
\frac{d v_{x}(t)}{d t} & =\frac{q B}{m} v_{y}(t)-\frac{\gamma}{m} v_{x}(t) \\
\frac{d v_{y}(t)}{d t} & =-\frac{q B}{m} v_{x}(t)-\frac{\gamma}{m} v_{y}(t)
\end{aligned}
$$

(i) Write a program to simulate the dynamics of the charged particle. Assume that the initial velocity of the particle is $\mathbf{v}(t=0)=(1,0,0)$ and the initial position $\mathbf{r}(t=0)=(0,0)$. Let $d t=0.001, q B / m=2.0$, and $\gamma / m=0$. Let the period of simulation $\mathrm{T}=10$ (i.e. $\mathrm{T} / \mathrm{dt}=10000$). All this quantities are given in dimensionless units. Plot the trajectory of the particle $[x(t), y(t)]$. What is the shape of the trajectory?
[15 marks]
(ii) Choose an appropriate value(s) of γ / m to investigate the effects of the damping force. Plot the trajectory of the particle under the influence of a
damping force with the same initial conditions as (i). Discuss your observations.
[10 marks]
(b) Crossed Electric-Magnetic fields. Now suppose an electric field $\mathbf{E}=E_{0} \hat{\mathbf{x}}$ is introduced into the system. In this case we need to add an extra term in the equation describing the change in x -component of the velocity :

$$
\frac{d v_{x}(t)}{d t}=\frac{q B}{m} v_{y}(t)-\frac{\gamma}{m} v_{x}(t)+\frac{q E}{m},
$$

whilst the other equations remain the same. Assume that $q E / m=2.0, q B / m=$ 2.0 , and $\gamma / m=0$, in dimensionless units. Show that the particle released with an initial velocity $\mathbf{v}(t)=0$ from the origin will move like a leaping frog along the y -axis. Explain why this is so.
[15 marks]

