UNIVERSITY OF SWAZILAND

ŧ

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2012/2013

TITLE OF PAPER : COMPUTATIONAL METHODS I

COURSE NUMBER : P262

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER <u>ANY FOUR</u> OUT OF SIX QUESTIONS. EACH QUESTION CARRIES <u>25</u> MARKS.

> MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

STUDENTS ARE PERMITTED TO USE MAPLE TO ANSWER THE QUESTIONS.

THIS PAPER HAS <u>SEVEN</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1

P262 Computational Methods I

(b)

Question one

(a) Given the following second order homogeneous differential equation as $d^2 y(x) = d y(x)$

$$\frac{d^2 y(x)}{dx^2} + 2 \frac{d y(x)}{dx} + 5 y(x) = 0$$

- (i) set $y(x) = e^{ax}$ and find the appropriate values of a. Write down its general solution. (4 marks)
- (ii) if the initial conditions are given as y(0) = -1 & $\frac{d y(x)}{d x}\Big|_{x=0} = 2$,

then find its specific solution and plot it for x = 0 to 5 . (5 marks) Given the following non-homogeneous differential equation as

$$\frac{d^2 y(t)}{dt^2} + 4 \frac{d y(t)}{dt} + 10 y(t) = 5 e^{-4t} - 2t$$

- (i) find its particular solution $y_p(t)$, (6 marks)
- (ii) find the general solution to the homogeneous part of the given equation $y_h(t)$ and then write down the general solution to the given non-homogeneous differential equation $y_e(t)$ (5 marks)
- (iii) if the initial conditions are given as $y(0) = 4 \quad \& \quad \frac{d y(t)}{d t} \bigg|_{t=0} = -1$,

then find its specific solution and plot it for x = 0 to 5. (5 marks)

Question two

Given the following Bessel's equation as

$$x^{2} \frac{d^{2} y(x)}{dx^{2}} + x \frac{d y(x)}{dx} + (x^{2} - 4) y(x) = 0 ,$$

(a) (i) use *dsolve* command to find its general solution, (2 marks) (ii) use *series* command to express BesselJ(2,x) & BesselY(2,x) into their power series up to x^{11} (i.e., would appear with $0(x^{12})$). Then convert them into polynomials. (4 marks)

- (b) (i) set $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ and $a_0 \neq 0$, utilize the power series method to find its indicial equations and thus find the values of
 - (ii) $s \& a_1$, (6 marks) (ii) for s = 2, set $a_0 = 1$, use the recurrence relation to find the values of a_n up to n = 8. Show that this polynomial solution is linearly dependent to the independent solutions in (a)(ii). (9 marks)
 - (iii) for s = -2, set $a_0 = 1$, use the recurrence relation to find the values of a_n up to n = 8. Show that this polynomial solution can not be found directly by power series method. (4 marks)

Question three

(a) Given the following system of linear equations as :

ă

 $\begin{cases} -10 x_1 + 5 x_2 - 8 x_3 = 41 \\ 7 x_1 - 3 x_2 + 6 x_3 = -28 \\ 6 x_1 - 3 x_2 + x_3 = -17 \end{cases}$ (i) solve them by Gauss elimination, (4 marks) (ii) solve them by Crammer's rule. (4 marks)

(b) Given the following system of first order differential equations as :

$$\begin{cases} \frac{dx_1(t)}{dt} = 9 x_1(t) - 3 x_2(t) \\ \frac{dx_2(t)}{dt} = 4 x_1(t) - 4 x_2(t) \end{cases}$$
(i) Set $x_1(t) = X_1 e^{\lambda t}$ & $x_2(t) = X_2 e^{\lambda t}$ and deduce the following matrix equation $A X = \lambda X$, where $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$. (4 marks)
(ii) Find the eigenvalues λ . For each eigenvalue find its eigenvector.
(4 marks)
(iii) Write down the general solutions of $x_1(t)$ & $x_2(t)$. (2 marks)
(iv) If the following initial conditions are given as $x_1(0) = 3$ & $x_2(0) = -2$,

find the specific solutions of
$$x_1(t)$$
 & $x_2(t)$. Plot these
 $x_1(t)$ & $x_2(t)$ for t from 0 to 1 and show them in a single display (7 marks)

4

Question four

- $f(x, y, z) = x^2 z 5 y^3 + 4 x z^2$, Given a scalar function as (a) find the value of $\vec{\nabla} f$ at the point (-1, -3, 5), (3 marks) (i) find the value of its directional derivative , i.e., $\frac{df}{dl}$, at the given point (ii) (-1, -3, 5) along the direction of [2, 1, -3]. (4 marks) Given a vector field as $\vec{F} = \vec{e}_x (3y^2 - 12xz) + \vec{e}_y 6xy - \vec{e}_z 6x^2$, find the (b) value of $\int_{P_1}^{P_2} \vec{F} \cdot d\vec{l}$ where $P_1:(1,2,0)$ & $P_2:(7,10,0)$ and if L : a straight line from P_1 to P_2 on z = 0 plane, (i) (6 marks) L : a semi-circular path from P_1 to P_2 in counter clockwise sense (ii) on z = 0 plane. Compare this answer with that obtained in (b)(i) and comment on the conservative property of the given vector field. (Hint : radius = 5 & centered at (4, 6), thus $x = 4 + 5\cos(t)$ & $y = 6 + 5\sin(t)$ where t is integrated from $\pi + \tan^{-1}\left(\frac{4}{3}\right)$ to $2\pi + \tan^{-1}\left(\frac{4}{3}\right)$). (6 marks) Find $\nabla \times \vec{F}$. Does it agree with your comment in (b)(ii)? (3 marks) (iii)
 - (iv) If $\vec{\nabla} \times \vec{F} = 0$ in (b)(iii), then find the associated scalar potential of the given \vec{F} . (3 marks)

Question five

Given the following non-homogeneous differential equation as :

$$\frac{d^2 y(t)}{dt^2} - 3 \frac{d y(t)}{dt} + 2 y(t) = f(t)$$
where $f(t)$ is a periodic function with its period = 2, i.e.,
 $f(t) = f(t+2) = f(t+4) = f(t+6) = \cdots$, and its first period behaviour is given as
 $f(t) = \begin{cases} t & if & 0 \le t \le 1 \\ -t+2 & if & 1 \le t \le 2 \end{cases}$,
(a) (i) find the Fourier series representation of $f(t)$ up to n = 10 and name this truncated series as $f_{10}(t)$, (7 marks)
(ii) find the particular solution of $y(t)$ corresponding to $f_{10}(t)$ replacing $f(t)$ in the given non-homogeneous differential equation, (9 marks)
(b) (i) find the general solution for the homogeneous part of the given differential equation, i.e., $\frac{d^2 y(t)}{dt^2} - 3 \frac{d y(t)}{dt} + 2 y(t) = 0$, then write down the general solution for the given non-homogeneous differential equation, (4 marks)

(ii) find the specific solution to the given non-homogeneous differential equation if the initial conditions are given as $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right)^{1/2}$

$$y(0) = -5 \quad \& \quad \frac{d y(t)}{d t} \Big|_{t=0} = 2$$
 (5 marks)

Question six

A vibrating string of length L is fixed at its two ends, i.e., x = 0 & x = L. Its transverse displacement u(x,t) satisfies the following one-dimensional wave equation $\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u(x,t)}{\partial t^2} = 0$ where c is a constant related to the properties of the given string

given string,

 $u(x,t) = \sum u_k(x,t)$

(b)

- (a) set u(x, y) = F(x) G(y) and utilize the separation of variable scheme to break the above partitial differential equation into two ordinary differential equations.
 - (4 marks) The general solution of the above partitial differential equation can be written as $w(w) = \sum_{i=1}^{n} w(w_i)$

$$=\sum_{\forall k}^{\forall k} (A_k \cos(kx) + B_k \sin(kx)) (C_k \cos(ckt) + D_k \sin(ckt))$$

where A_k , B_k , C_k & D_k are arbitrary constants.

(i) Applying two fixed end conditions, i.e., $u_k(0,t) = 0$ & $u_k(L,t) = 0$ and one zero initial speed condition, i.e., $\frac{\partial u_k(x,t)}{\partial t}\Big|_{t=0} = 0$, show that the

above general solution can be deduced to

$$u(x,t) = \sum_{n=1}^{\infty} E_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{c n\pi t}{L}\right) \text{ where } E_n \quad (n = 1, 2, 3,)$$

are arbitrary constants. (8 marks)

(ii) If c = 3, L = 10 and the initial position of

the string is given as
$$u(x,0) = \begin{cases} 3 x & if \quad 0 \le x \le 2\\ 6 & if \quad 2 \le x \le 7\\ -x+10 & if \quad 7 \le x \le 10 \end{cases}$$

find the values of E_1 , E_2 , E_3 , \cdots , E_6 . Then plot this specific polynomial solutions of t = 0, t = 0.3 and t = 0.6 all for the same range of x = 0 to 10 and show them in a single display.

(13 marks)