UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION $\quad 2012 / 2013$
TITLE OF PAPER : MATHEMATICAL METHODS FOR PHYSICISTS
COURSE NUMBER : P272
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF SIX QUESTIONS. EACH QUESTION CARRIES 25 MARKS.MARKS FOR DIFFERENT SECTIONS ARESHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS EIGHT PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P272 MATHEMATICAL METHODS FOR PHYSICIST

Question one

(a) Given a vector field in Cartesian coordinates as $\vec{F}=\vec{e}_{x} 5 x y z-\vec{e}_{z} 4 x^{2} y$, show that it satisfies the following vector identity $\vec{\nabla} \bullet(\vec{\nabla} \times \vec{F}) \equiv 0$.
(6 marks)
(b) Given $\vec{F}=\vec{e}_{x}(-6 x z)+\vec{e}_{y}\left(6 y^{2}\right)+\vec{e}_{z}\left(-3 x^{2}\right)$ find the value of the following line integral
$\int_{P_{1}, L}^{P_{2}} \vec{F} \bullet d \vec{l} \quad$ if $\mathrm{P}_{1}:(-2,-2,1), \mathrm{P}_{2}:(2,2,1)$ and
(i) L : a straight line from P_{1} to P_{2} on $z=1$ plane.
(6 marks)
(ii) L : a semi-circular path in counter clockwise sense from P_{1} to P_{2} on $z=1$ plane, centred at $(0,0,1)$ with a radius of $2 \sqrt{2}$.
Compare this answer with that obtained in (b)(i) and show that the given \vec{F} is a conservative vector field.
(10 marks)
(Hint : L: $z=1, x=2 \sqrt{2} \cos (\mathrm{t}), \mathrm{y}=2 \sqrt{2} \sin (\mathrm{t}) \& \mathrm{t}$ from $\pi+\frac{\pi}{4}$ to $\frac{\pi}{4}$)
(iii) Show that the associated scalar potential f of this given conservative vector field is $\quad f=2 y^{3}-3 x^{2} z$.
(3 marks)

Question two

Given $\vec{F}=\vec{e}_{\rho}\left(4 \rho^{3}\right)+\vec{e}_{\phi}\left(\rho^{3} \sin \phi\right)+\vec{e}_{z}\left(2 \rho z^{2}\right)$ in cylindrical coordinates,
(a) find the value of $\oint_{S} \vec{F} \bullet d \vec{s}$ if S is the closed surface enclosing the cylindrical tube of cross-sectional radius 5 and tube height 9 , i.e., $S=S_{1}+S_{2}+S_{3}$ where
$\mathrm{S}_{1}:\left(z=-3,0 \leq \rho \leq 5,0 \leq \phi \leq 2 \pi \quad \& \quad d \vec{s}=-\vec{e}_{z} \rho d \rho d \phi\right)$
$\mathrm{S}_{2}:\left(z=+6,0 \leq \rho \leq 5,0 \leq \phi \leq 2 \pi \quad \& \quad d \vec{s}=+\bar{e}_{z} \rho d \rho d \phi\right)$
$\mathrm{S}_{3}:\left(\rho=5,0 \leq \phi \leq 2 \pi,-3 \leq z \leq+6 \& d \vec{s}=\vec{e}_{\rho} \rho d \phi d z \xrightarrow{\rho=5} \vec{e}_{\rho} 5 d \phi d z\right)$
(13 marks)
(b) (i) find $\vec{\nabla} \bullet \vec{F}$,
(4 marks)
(ii) then evaluate the value of $\iiint_{V}(\vec{\nabla} \bullet \vec{F}) d v$ where V is bounded by S given in (a), i.e., V : $0 \leq \rho \leq 5,0 \leq \phi \leq 2 \pi,-3 \leq z \leq+6$ \& $d v=\rho d \rho d \phi d z$. Compare this value with that obtained in (a) and make a brief comment.
(8 marks)

Question three

Given the following non-homogeneous differential equation as
$\frac{d^{2} x(t)}{d t^{2}}+2 \frac{d x(t)}{d t}+5 x(t)=f(t)$,
(a) find its particular solution $x_{p}(t)$ if
(i) $\quad f(t)=26 \sin (3 t)$
(6 marks)
(ii) $f(t)=5 t$,
(5 marks)
(b) for the homogeneous part of the given non-homogeneous differential equation, i.e., $\frac{d^{2} x(t)}{d t^{2}}+2 \frac{d x(t)}{d t}+5 x(t)=0$, set $x(t)=e^{\alpha t}$ and find the appropriate values of α and thus write down its general solution $x_{h}(t)$
(c) if $f(t)=26 \sin (3 t)$, write down the general solution of the given non-homogeneous differential equation in terms of the answers obtained in (a) \& (b). If the initial conditions are $x(0)=\left.2 \& \frac{d x(t)}{d t}\right|_{t=0}=1$, find its specific solution $x_{s}(t)$.

Question four

(a) Given the following 2-D Laplace equation in spherical coordinates as
$\nabla^{2} f(r, \theta)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f(r, \theta)}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial f(r, \theta)}{\partial \theta}\right)=0 \quad$, set $f(r, \theta)=F(r) G(\theta)$ and use separation variable scheme to separate the above partial differential equation into two ordinary differential equations.
(b) Given a Bessel's differential equation as :
$x^{2} \frac{d^{2} y(x)}{d x^{2}}+x \frac{d y(x)}{d x}+\left(x^{2}-9\right) y(x)=0$, set $\quad y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s} \quad \& \quad a_{0} \neq 0$ and utilize the power series method,
(i) write down its indicial equations and show that $s=-3$ or +3 and $a_{1}=0$,
(8 marks)
(ii) write down its recurrence relation. Set $a_{0}=1$ and use the recurrence relation to generate two independent solutions in power series form truncated up to a_{6} term. Show that one of the independent solution is a divergent series.

Question five

Two simple harmonic oscillators are joined by a spring with a spring constant k_{12} as shown in the diagram below :

The equations of motion for this coupled oscillator system ignoring friction are given as
$\left\{\begin{array}{l}m_{1} \frac{d^{2} x_{1}(t)}{d t^{2}}=-\left(k_{1}+k_{12}\right) x_{1}(t)+k_{12} x_{2}(t) \\ m_{2} \frac{d^{2} x_{2}(t)}{d t^{2}}=k_{12} x_{1}(t)-\left(k_{2}+k_{12}\right) x_{2}(t)\end{array}\right.$
where $x_{1} \& x_{2}$ are horizontal displacements of $m_{1} \& m_{2}$ measured from their respective resting positions.
If given $m_{1}=1 \mathrm{~kg}, m_{2}=3 \mathrm{~kg}, k_{1}=2 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{2}=6 \frac{\mathrm{~N}}{\mathrm{~m}} \& k_{12}=9 \frac{\mathrm{~N}}{\mathrm{~m}}$,
(a) Set $x_{1}(t)=X_{1} e^{i \omega t} \quad \& \quad x_{2}(t)=X_{2} e^{i \omega t}$, then the above given equations can be deduced to the following matrix equation $A X=-\omega^{2} X \quad$ where

$$
A=\left(\begin{array}{cc}
-11 & 9 \tag{5marks}\\
3 & -5
\end{array}\right) \quad \& \quad X=\binom{X_{1}}{X_{2}}
$$

(b) find the eigenfrequencies ω of the given coupled system,
(c) find the eigenvectors X of the given coupled system corresponding to each eigenfrequencies found in (b),
(d) find the normal coordinates of the given coupled system,
(e) write down the general solutions for $x_{1}(t) \& x_{2}(t)$.

Question six

An elastic string of length 8 is fixed at its two ends, i.e., at $x=0 \quad \& \quad x=8$ and its transverse deflection $u(x, t)$ satisfies the following one-dimensional wave equation $\frac{\partial^{2} u(x, t)}{\partial t^{2}}=4 \frac{\partial^{2} u(x, t)}{\partial x^{2}}$,
(a) use separation of variable scheme to split the above partial differential equation into two ordinary differential equations and then write down the general solution of $u(x, t)$.
(8 marks)
(b) given the general solution of $u(x, t)$, after satisfying two fixed end conditions as well as zero initial speed condition, as $\quad u(x, t)=\sum_{n=1}^{\infty} E_{n} \sin \left(\frac{n \pi x}{8}\right) \cos \left(\frac{n \pi t}{4}\right) \quad$ where $E_{n} \quad n=1,2,3, \cdots \cdots \quad$ are arbitrary constants, then find E_{n} in terms of n and calculate the values of $E_{1}, E_{2} \& E_{3}$ if the initial position of the string, i.e., $u(x, 0)$, is given as $\quad u(x, 0)=\left\{\begin{array}{cl}3 x & \text { if } 0 \leq x \leq 2 \\ -x+8 & \text { if } 2 \leq x \leq 8\end{array}\right.$
(hint: $\int_{x=0}^{8} \sin \left(\frac{n \pi x}{8}\right) \sin \left(\frac{m \pi x}{8}\right) d x=\left\{\begin{array}{lll}0 & \text { if } & n \neq m \\ 4 & \text { if } & n=m\end{array} \quad \&\right.$
$\left.\int x \sin \left(\frac{n \pi x}{8}\right) d x=\frac{64}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{8}\right)-\frac{8}{n \pi} x \cos \left(\frac{n \pi x}{8}\right)\right)$
(17 marks)

Useful informations

The transformations between rectangular and spherical coordinate systems are :

$$
\left\{\begin{array} { c }
{ x = r \operatorname { s i n } (\theta) \operatorname { c o s } (\phi) } \\
{ y = r \operatorname { s i n } (\theta) \operatorname { s i n } (\phi) } \\
{ z = r \operatorname { c o s } (\theta) }
\end{array} \quad \& \quad \left\{\begin{array}{c}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right)
\end{array}\right.\right.
$$

The transformations between rectangular and cylindrical coordinate systems are :

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x = \rho \operatorname { c o s } (\phi) } \\
{ y = \rho \operatorname { s i n } (\phi) } \\
{ z = z }
\end{array} \quad \& \quad \left\{\begin{array}{c}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
z=z
\end{array}\right.\right. \\
& \vec{\nabla} f=\vec{e}_{1} \frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}}+\vec{e}_{2} \frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}}+\vec{e}_{3} \frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}}
\end{aligned} \begin{aligned}
& \vec{\nabla} \bullet \vec{F}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(F_{1} h_{2} h_{3}\right)}{\partial u_{1}}+\frac{\partial\left(F_{2} h_{1} h_{3}\right)}{\partial u_{2}}+\frac{\partial\left(F_{3} h_{1} h_{2}\right)}{\partial u_{3}}\right) \\
& \vec{\nabla} \times \vec{F}= \frac{\vec{e}_{1}}{h_{2} h_{3}}\left(\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{2}}-\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{3}}\right)+\frac{\vec{e}_{2}}{h_{1} h_{3}}\left(\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{3}}-\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{1}}\right) \\
& \quad+\frac{\vec{e}_{3}}{h_{1} h_{2}}\left(\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{1}}-\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{2}}\right)
\end{aligned}
$$

where $\vec{F}=\vec{e}_{1} F_{1}+\vec{e}_{2} F_{2}+\vec{e}_{3} F_{3} \quad$ and $\left(u_{1}, u_{2}, u_{3}\right)$ represents $(x, y, z) \quad$ for rectangular coordinate system represents $\quad(\rho, \phi, z) \quad$ for cylindrical coordinate system represents $(r, \theta, \phi) \quad$ for spherical coordinate system $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ represents $\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right) \quad$ for rectangular coordinate system represents $\left(\vec{e}_{\rho}, \vec{e}_{\phi}, \vec{e}_{z}\right) \quad$ for cylindrical coordinate system represents $\left(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\phi}\right) \quad$ for spherical coordinate system

$$
\begin{array}{lll}
\left(h_{1}, h_{2}, h_{3}\right) & \text { represents } & (1,1,1) \\
& \text { represents } & (1, \rho, 1) \\
& \text { represents } & (1, r, r \sin (\theta))
\end{array}
$$ for rectangular coordinate system for cylindrical coordinate system for spherical coordinate system

$\int(t \sin (k t)) d t=-\frac{t \cos (k t)}{k}+\frac{\sin (k t)}{k^{2}}$
$\int(t \cos (k t)) d t=\frac{t \sin (k t)}{k}+\frac{\cos (k t)}{k^{2}}$

