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P272 MATHEMATICAL METHODS FOR PHYSICIST 


Question one 

(a) 	 Given a vector field in Cartesian coordinates as F= ex 5 x yz e 4 x 2 y •show that z 

it satisfies the following vector identity V • (V x F) == 0 . 	 ( 6 marks ) 

(b) Given F= ex (- 6 x z) + ey (6 y2)+ e (- 3 X2) find the value of the following line z 

integral

f2 F• d f if PI: ( - 2 , - 2 • 1) , P2 : ( 2 , 2 , 1) and 
PI,L 

(i) 	 L : a straight line from PI to P2 on z = 1 plane. ( 6 marks ) 
(ii) 	 L : a semi-circular path in counter cloclrnrise sense from PI to P2 on z = 1 plane, 

centred at ( 0 , 0 , 1 ) with a radius of 2..fi . 

Compare this answer with that obtained in (b)(i) and show that the given F is a 
conservative vector field. ( 10 marks ) 

(Hint: 	L: z= 1, x = 2..fi cos(t), y= 2..fi sin(t) & t from 7C + 7C to 7C)
4 4 

(iii) 	 Show that the associated scalar potential f of this given conservative vector field 
2is 	 . f =2 y3 - 3 x Z • (3 marks) 
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Question two 

Given F = ep (4 p3 ) + e; (p3 sin q;) + e (2 p Z2) in cylindrical coordinates, z 

(a) find the value of 1s F. d s if S is the closed surface enclosing the cylindrical tube 

of cross-sectional radius 5 and tube height 9 ,i.e., S =SJ + S2 + S3 where 


81 (z= 3; O~p~5, O~q;~21r & ds=-ezpdpdq;) 


82 (z =+ 6 , 0 ~ p ~ 5 , 0 ~ q; ~ 21r & d s =+ ez pdp d q; ) 

83 (p = 5 , 0 ~ q; ~ 2 1r 3 ~ z ~ + 6 & d s = ep pdq; d z p = 5 ) ep 5 d q; d z) 


(13 marks) 
(b) (i) find V. F ( 4 marks) 

(ii) then evaluate the value of IfIv (V. F) d v where V is bounded by 8 given in 

(a), i.e., v: O~p~5, O~q;~21r, -3~z~+6 & dv=pdpdq;dz. 

Compare this value with that obtained in (a) and make a brief comment. 
(8 marks) 
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Question three 

Given the following non-homogeneous differential equation as 

d
2 

X~t) + 2 d x(t) + 5 x(t) = f(t) , 
dt dt 

(a) 	 find its particular solution xp (t) if 

(i) f(t)=26sin(3t) 	 (6 marks) 

(ii) f(t) =5 t 	 (5 marks) 
(b) 	 for the homogeneous part ofthe given non-homogeneous differential equation, i.e., 

d 2 x(t) d x(t) 	 . 
--7--'- + 2 -- + 5 xU) =0 ,set x(t) =eat and find the appropnate values of a and 

dt 2 dt 

thus write down its general solution xh (t) 	 ( 5 marks ) 

(c) 	 if f(t) = 26 sin(3t), write down the general solution of the given non-homogeneous 
differential equation in terms of the answers obtained in (a) & (b) . If the initial conditions 

are x(0) = 2 & d x(t )1 =1 ,find its specific solution xs (t) . ( 9 marks ) 
dt 1=0 
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Question four 

(a) 	 Given the following 2-D Laplace equation in spherical coordinates as 

,,2 f(r ,e) = 1 0 (r2 0 f(r ,e)J + 1 0 (sin(e) 0 f(r ,e)J =0 	 ,set
r2 or 0 r r2 sin(e) oe oe 

f(r ,e) =F(r) G(e) and use separation variable scheme to separate the above partial 

differential equation into two ordinary differential equations. ( 5 marks ) 
(b) 	 Given a Bessel's differential equation as : 

2 


x 2 d
 y~x) + x d y(x) + (x 2 
_ 9) y(x) =0 ,set y(x) f an xn +s & ao;e 0 and utilize 

dx dx n 0 

the power series method, 
(i) 	 write down its indicial equations and show that s = - 3 or + 3 and aJ =0 , 

(8 marks) 
(ii) 	 'write down its recurrence relation. Set ao 1 and use the recurrence relation to 

generate two independent solutions in power series form truncated up to a6 term. 

Show that one of the independent solution is a divergent series. ( 12 marks ) 
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Question five 

Two simple harmonic oscillators are joined by a spring with a spring constant kl2 as shown in the 
diagram below: 

The equations ofmotion for this coupled oscillator system ignoring friction are given as 

d 2 
XI (t) 

ml ? = - (kl + k12 ) XI (t) + kl2 X 2(t)
dt 
2

d x2 (t) ()
m2 ? =kl2 XI (t) k2 + kl2 x 2 (t)

dt 

where 	 XI & are horizontal displacements of & measured from their respective x 2 	 m l m2 

resting positions. 

If given m] =1 kg , = 3 kg , kl =2 N • k2 = 6 N & k12 =9 N •m2 m m m 
(a) 	 set XI (t) XI e i 

ail & X2 (t) = X 2 e i 
aH , then the above given equations can be deduced to 

the following matrix equation A X = ())2 X where 

-11 	 91 (XI]
A = 3 5) & X = X	 ( 5 marks )(	 

2 

(b) 	 fInd the eigenfrequencies ill of the given coupled system, (6 marks) 
(c) 	 fInd the eigenvectors X of the given coupled system corresponding to each 

eigenfrequencies found in (b), ( 6 marks ) 
(d) 	 fInd the normal coordinates of the given coupled system, (6 marks) 
(e) 	 write down the general solutions for Xl (t) & x 2 (t) . (2 marks ) 
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Question six 

An elastic string of length 8 is fixed at its two ends, i.e., at x = 0 & x 8 and its 

transverse deflection u(x ,t) satisfies the following one-dimensional wave equation 

8 2 u(x,t) =4 82 u(x,t) 
8t 2 8x2 

' 

(a) 	 use separation of variable scheme to split the above partial differential equation into two 
ordinary differential equations and then write down the general solution of u(x ,t) . 

(8 marks) 
(b) 	 given the general solution of u(x ,t) , after satisfying two fixed end conditions as well as 

zero initial speed condition, as u(x,t) = fEn sin( n1f x) cos( n1ft \j where 
n=1 8 4 

En n =1,2,3,. ..... are arbitrary constants, then find En in terms of- n and 

calculate the values of E, , E2 & E3 if the initial position of the string, i.e., u(x, 0) , 
3x if O~x~2 

IS gIven as u(x ,0) = 	 .{-x+8 if 2~x~8 
8 (n1f x) (m1f x) {O if n * m(hint: sin -- sin -- dx =. &1x=O' 8 8 4 if n =m 

J . (n1fx) 64. (n1fx) 8 (n1fx)x sm -- d x = sm -- - - x cos. --) ( 17 marks ) 
8 	 8 n1f ,,8 
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Useful informations 
The transfonnations between rectangular and spherical coordinate systems are : 

r =~x 2 + y2 + z2 

x =r sin(O) cos(¢) 

y = r sin(O) sin(¢) & 8=tan-fX2: y2] 
z =r cos(O) 

¢=tan-I(~) 
The transfonnations between rectangular and cylindrical coordinate systems are : 

p=~X2 +/x = p cos(¢) 

y = p sin(¢) & ¢=tan-I(~) 
z=z z=z 

- f -	 1 of - 1 of - 1 of
V =el 	--+e2 ---+e3-

hi oUI h2 oU2 h3 oU3 

- - 1 (O(FJ h2 h3) O(F2 hi h3) O(F3 hi h2))V-F= 	 + +~~-= 
hi h2 h3 oUI oU2 oU3 

VXF=~[O(F3 h3) _ O(F2 h2))+~[O(FI hi) _ O(F3 h3)) 
h2 h3 oU2 oU3 hi h3 oU3 oUI 

+ ~ (O(F2 h~) _ o(FI hi )J 
hi h2 oUI oU2 

where F = i\ FJ + e2 F2 + e3 F3 and 

(u l , u2 , u3 ) represents (x,y,z) for rectangular coordinate system 

represents (p,r/J,z) for cylindrical coordinate system 

(e] ,e2 , eJ 
represents 

represents 

represents 

(r,e,r/J) 
(ex, ey , eJ 
(ep , e¢ ,eJ 

for spherical coordinate system 

for rectangular coordinate system 

for cylindrical coordinate system 

represents (er , eo ,e¢) for spherical coordinate system 

(hi' h2 ' h3) represents (1,1,1) for rectangular coordinate system 

represents (l,p,l) for cylindrical coordinate system 

represents (1 , r , r sinee) ) for spherical coordinate system 

J(t sin(kt))dt = _ t cos(kt) + sin(kt) 
k e 

J(t cos(k t)) d t = t sin(k t) + cos(k t) 
k e 

8 



