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P320 CLASSICAL MECHANICS 


Question one 

Consider a particle ofmass m acted on by an attractive central force of F= e r ~ ,where k 
r 

is a positive constant, and moving in a 2-D plane described by the plane polar coordinates as 
shown in the diagram below, 
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(a) 	 (i) From r =e r r and 

e = ~x cos(e) + e sin(e) & ee = - ex sin(e)+ e cos(e)r y 	 y 

(where ex & ey are constant unit vectors while e, & eo are not) ,deduce 

that v == F er r+ ee r iJ (3marks) 

(ii) From T ( = ; (v. v)) and deduce that the kinetic energy of this particle in this 

plane polar coordinate is T= m (r2 + r2 iJ2) . 	 (2 marks)
2 

Ir 
(ii) From V = - F. d I where d I = d r =er d r + ee r de & ro -t 00 

'0 

find the potential energy V of this particle in this plane polar coordinate under 

the given force F= - e, 4 where k is a constant. Show that 
r 

(3 marks)V=-( k
4 r 4 

(iii) Write down the Lagrange equations ofmotion for this system and show that 

.. ( £i2 k)mr= mro 	--;s 
d ( 2 ')- mr e =0 
dt 

(6 marks) 
(iv) Write its (r, e) respective momentums, i.e., Pr & Pe . (2 marks) 
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Question one (continued) 

(b) 	 (i) Since the Lagrangian L ofthe system is not explicitly depending on t, this implies 
the Hamiltonian H can be simply written as H =T + V , deduce that the 

Hamiltonian H of the system is H = ((PrY + (PeY
2 
J+ [-~J. 

2m 2mr 4r 

(3 marks) 
(ii) Write down the Hamilton's equations ofmotion for this system and show that 

r= 
m 

iJ =.J:!..L 
m r2 

Pr = (PaY 
m r3 

. 
Pa = 0 

k 
5 

r 

(6 marks) 
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Question two 

For a particle of mass m acted on by an earth gravitational force of F = - ey m g and 

undergoing a projectile motion near the earth surface in a x-y plane where x-direction is along the 
horizontal direction, there is no other force acting on the particle. 
(a) Write down the Hamiltonian H of the system, i.e., H(x ,Y,Px ,py) ,and show that 

2 

H = Px + + m g y

2m 2m 
 (5 marks) 

(b)/ From the definition ofthe Poisson brackets , i.e., [F,G]= t(OF oG _ of OGJ ' 
a=! oqa 0 Pa 0 Pa oqa 

evaluate [x,H] , [y,H] , [Px ,H] and tpy,HJ (8 marks) 

(c) For an equation of the type d u = [u, H] the specific solution of u{t) is given by the 
dt 

following series expansion 

t 2 t 3 

u{t) =u + ru H] t + [u H] H] + [[[u H] H] H] - + ........ . 

o ~'O "0 21 '" 0 31 

where subscript 0 denotes the initial conditions at t =0 . 
Use the above relation to show that for the given Hamiltonian, the specific solutions of 
x{t) and y{t) are given by 

() Px.o 
x t = Xo + --t 

y(t) Yo+P~OI_;t21 
where Xo and Px 0 are the initial x-position and x-momentum and Yo and Py,o are 

the initial y-position and y-momentum . (12 marks) 

4 




Question three 

(a) A two-body system is depicted below 

In, 
~ 

r 
/ 

~\e_-1112 ~ 
Y; 	 - -~x 

where r; & r are the position vectors of & respectively.2 	 ml m2 

Define the center of mass of the system and show that the total kinetic energy of the 

system, i.e., T =.! ml ~ • ~ ) + .! mz ~2 • F2 ) ,can be reduced to 
2 2 

2T =	.! ,u ~ • fr) (Where ,u = m) m is the reduced mass] if the center of mass is 
2 m) + m2 

chosen to be the origin. 	 ( 9 marks ) 
(b) 	 If an earth satellite of 500 kg mass is having a pure tangential speed 

vIt (= r iJ) =8,000 m at its near-earth-point 400 km above the earth surface, 
s 

(i) 	 calculate the values of the angular momentum I and the total energy E ofthis 
satellite, ( 5 marks ) 

(ii) 	 calculate the values of the eccentricity E and show that the orbit is an elliptical 
orbit. Also calculate its period. ( 8 marks ) 

(iii) 	 What is the value of the pure tangential speed the satellite should have at 400 km 
above the earth surface such that its orbit is circular in shape? ( 3 marks ) 
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Question four 

Two identical simple pendulums with mass m attached at the end of a massless rod of length I 
The rod of the second pendulum is attached to the mass of the first pendulum as shown below 

1~ 
Or x 

I 

. Ie1.~1fI i 

. 
!
I t X m (x,) Y,) 

'lr f 

I .t~ I ez 
I I 

~ X;J.-44tm 	 C>:li~2)
I I 

The kinetic and potential energies for the system in terms of XI' Yl ' X 2 & Y2 are 

1 (.2 '2) 1 ('2 .2) & UT == - m 	Xl + Yl + m X2 + Y2 == m g YI + m g Y2 
2 	 2 

(i) 	 Show that the Lagrangian for the system in terms of °1 and °2 can be expressed as: 

2 '2 • 1 2 '2 2 ., (
L == m I ° 1 + m I ° 2 + m I 0] O2 cos 01 ° 2 ) + 2 m g I cos(OJ+ m g I cos(OJ

2 
(10 marks) 

(ii) 	 Write down the equations ofmotion and deduce that 

.. 1 (-. ( ). 2 • ( )) g . ( )°1 + \02 cos 01 - O + °2 sm 01 - °2 + - sm °1 =0
2 	 2 I 

(7 marks) 
2ii2 + (iii cos(OJ 	-°2 )-81 sin(OI -02))+ Sih(02) = 0

I 

(iii) The very rough approximated equations of motion for small °1 and °2 are given below 
.. 1.. g°1 + - O2 + -	 °1 == 02 I 

ii2 + iii + O2= 0 
I 

iOJ1 	 iOJ1Set 01 =XI e and ° = (where XI and X 2 are constants) and deduce 2 X 2 e 

from the given approximated equations the following equations for XI and X 2 as 

2 1 2gJ
-OJ +- XA 

--OJ XA =0 
[ I I 2 2 

- oi X + [- oi + g JX =01 I 2 

Then find the appropriate values of m such that XI and X2 can have non~zero 
solutions. ( 4+4 marks ) 
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Question fIVe 

Six equal mass points, each of mass m ,are attached by massless rigid rods to form a rigid body. 

The coordinates ofeach mass point in the body coordinate system (XI' X2 ,X3 ) are indicated and 


its origin is chosen and shown in the diagram below. 

, ,X} 

1}t :,\(Jill it.L ,tt3) 
I f...Oj 01 2bJ "I: \ /t-l 

2bl 	 ~ 
I ~..\e~IIX21/X~J) (o/b/o) 
J.-- ~ ! \\ 

/ f \ 

-- / '/ i .(Xil/;nj X/~)7 XI- -J - - - - 
/"0 ! r. b/ D / 0)~ 

I /
(Xf/)'~f1.Aa) 


. (01 -b/CJ) 'In 

,/ 

/ 

-m,- (A#, ~2/~&) 
I lOJ 01-2b) 
I 

The coordinates of each mass point in terms of length b are indicated in the diagram. 
(a) 	 Evaluate all elements of the inertia tensor I of the given rigid body with respect to 

the chosen body coordinate system and show that 
210 m b 0 0] 

I = 0 10m b
2 

0 ( 9 marks ) [ o 0 4 mb2 

(b) 	 If the given rigid body is only rotating with an angular velocity iiJ without 
translational motion with respect to a fixed inertia coordinate system (x\, X'2 ,x'J ,write 

down the total kinetic energy T == Trotalional == 1 iiJ. I. iiJ in terms of CUI' cu2 &cu32 
where iiJ = el (01 + e2 w2 + e3 W3 (3 marks) 
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Question five (continued) 

(c) 	 The following are Euler's equations for force-free pure-rotational motion, i.e., 

L =Tro,ational , for already diagonalized I as the case in (a). 

(12 - IJ (i)2 (i)3 - II ml = 0 


(13 -II)(i)3 tq -12 m2 0

{

(II - IJ (i)1 (i)2 - 13 	m3 = 0 
(i) 	 For our given rigid body, deduce from the above Euler's equations that 

(i)3 = canst. K 


m =- 3 K (i)2 (A)

l 

5 

m = -	 3 K (i)1 •••••• (B)
2 	

5 
(5 marks) 

(ii) 	 Deduce from eq.(A) and eq.(B) in (c) (i) that 

~ ;_(3:)' "'I 	 ...... (C) (1 marks) 

3 
(iii) 	 By direct substitution, show that "'I; Aco{ : t + B) is the the solution to 

eq.(C) with A & B constant values linking to the given initial value of (i)) . 
(3 marks) 

3 
(iv) 	 Substitute "" =ACo{ : t+ B) into eq.(A) in (c)(i) to deduce that 

3 
tV, ; A co{ : t + B +"J ' Le., "'I & "', are having the same wave amplitude 

but totally out of phase. ( 4 marks ) 
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Useful informations 

v fF. d T and reversely F = - t7 V 

L =T - V == L(ql ,q2" ",q" ,ql ,q2 ,. .. ,q" ,t) 
8L . 8L 

P ==-- and p =-
a 8' a 8qqa a 

" 
H = I(Pa qJ- L = H(qj ,q2 ,"',q" ,ql ,q2 "",q" ,t) 

a:j 

. 8H d' 8H q = an p =-
a I 8 Pa a 8qa 

[u,v]== t(~~-~~J
a=1 8qa 8 Pa 8 Pa 8qa 

G = 6.673 X 10-11 N ~2 
kg 

radius of earth = 6.4 x 106 mrE 
mass of earth mE.== 6 x 1024 kg 

earth attractive potential == k where k == G m mE 

P*
r 

E12 . 
s == 1+ {(s == 0, circle), (0 < s< 1, ellipse), (s == 1, parabola), ... } 

J.ik 

ml m2 ::::;m 
j if m2 » mjJ.i = m + m 

l 2 

., k 
semI - major a = 2 lEI 

. . b IsemI - mm or =---;====:===;
For elliptical orbit, i.e., 0 < s < 1, then ~2 J.i lEI 

period r = 2 (JZ" a b) 
I 

rmin = a (1 - s) & rmzx == a (1 + s) 

for plane polar (r ,e) system with unit vectors (e, ,ee), we have 

V== e, r+ ee r e 
{ii = e, (r - r ( 2 )+ ee (2 re+ r e) 
nf - 8 - 1 8f 
v =e +e-

r 8r e r 8e 
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Useful informations (continued) 

Ima (X;,2 + X~,3) 
a 

Ima Xa,) Xa,2 
a 

- Ima Xa,) 
a 

Xa,3 

1=1 - Ima Xa,2 Xa,) 
a 

I
a 
ma (x;,) + X~,3) - Ima Xa,2 

a 
Xa,3 

- Ima Xa,3 Xa,) 
a 

- Ima Xa,3 Xa,2 
a 

Ima (x!,) + 
a 

X!,2) 

Feff = F m Rf - m &X f m mX (m X f) - 2 m mX v, where 

f'=R +f and 

f' I refers to jixed(inertial system) 

f'refers to rotatinal(non inertial system) rotates with mto f' system 

R from the origin of f' to the origin of f 

dfJv, =( d t r 
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