UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2012/2013
TITLE OF PAPER : ELECTROMAGNETIC THEORY
COURSE NUMBER : P331
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVEQUESTIONS.EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS ELEVEN PAGES, INCLUDING THIS PAGE.

P331 ELECTROMAGNETIC THEORY

Question one

(a) (i) For any closed surface S, enclosing a volume V, the integral form of continuity equation for electric charges in Electromagnetic theory can be written as $\oint_{S} \vec{J} \cdot d \vec{s}=-\frac{d}{d t}\left(\oint_{V} \rho_{v} d v\right)$. Explain briefly the meaning of the left hand side and the right hand side of this equation and indicate which law in physics it describes.
(3+1 marks)
(ii) Use the divergence theorem to transform the above integral form of continuity equation for electric charges into its differential form.
(3 marks)
(iii) (A) Show that without introducing the displacement current term, i.e., $\frac{\partial \vec{D}}{\partial t}$, in the equation for Ampere's law, i.e., $\bar{\nabla} \times \vec{H}=\bar{J}$ instead of $\vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}$, Maxwell's equations would contradict the continuity equation for electric charges.
(2 marks)
(B) Show that by including the displacement current term, Maxwell's equations are in agreement with the continuity equation.
(4 marks)
(b) (i) From the time-independent Maxwell's equations deduce the following Poison's equation for the electric scalar potential f in free space as

$$
\begin{equation*}
\nabla^{2} f=-\frac{\rho_{v}}{\varepsilon_{0}} \quad \text { where } \quad \vec{E} \equiv-\vec{\nabla} f \tag{3marks}
\end{equation*}
$$

(ii) The Pointing vector $\vec{R} \equiv \vec{r}-\vec{r}^{\prime} \equiv \vec{e}_{R} R$ is from the source point $\vec{r}^{\prime} \equiv \vec{e}_{x} x^{\prime}+\vec{e}_{y} y^{\prime}+\vec{e}_{z} z^{\prime}$ toward the field point $\vec{r} \equiv \vec{e}_{x} x+\vec{e}_{y} y+\vec{e}_{z} z$. By direct evaluation of $\vec{\nabla}\left(\frac{1}{R}\right)$ where $\left\{\begin{array}{l}R=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}} \\ \vec{\nabla} \rightarrow \vec{e}_{x} \frac{\partial}{\partial x}+\vec{e}_{y} \frac{\partial}{\partial y}+\vec{e}_{z} \frac{\partial}{\partial z} \\ \vec{e}_{R}=\vec{e}_{x} \frac{\left(x-x^{\prime}\right)}{R}+\vec{e}_{y} \frac{\left(y-y^{\prime}\right)}{R}+\vec{e}_{z} \frac{\left(z-z^{\prime}\right)}{R}\end{array}\right.$
show that

$$
\vec{\nabla}\left(\frac{1}{R}\right)=-\vec{e}_{R} \frac{1}{R^{2}}
$$

(6 marks)
(iii) Assuming the solution for the Poison's equation in (b)(i) is
$f(x, y, z)=\iiint_{d_{\text {shrurce po ints }}} \frac{\rho_{v}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)}{4 \pi \varepsilon_{0} R} d x^{\prime} d y^{\prime} d z^{\prime}$, use the result in (b)(ii) and
$\vec{E} \equiv-\vec{\nabla} f$ to deduce that
$\vec{E}(x, y, z)=\iiint_{t_{\text {source } p o \text { int } s}}\left(\vec{e}_{R} \frac{\rho_{v}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)}{4 \pi \varepsilon_{0} R^{2}}\right) d x^{\prime} d y^{\prime} d z^{\prime} \quad$ which is just the
Coulomb's law.
(3 marks)

Question two

A V - tube capacitor is extended very long into z direction with its cross section as shown below:

The electric potential $f(\rho, \phi)$ in cylindrical coordinates for the region between two conductors, i.e., $0 \leq \rho \leq a \& 0 \leq \phi \leq \frac{\pi}{2}$, satisfies the following two dimensional Laplace equation :
$\rho \frac{\partial\left(\rho \frac{\partial f(\rho, \phi)}{\partial \rho}\right)}{\partial \rho}+\frac{\partial^{2} f(\rho, \phi)}{\partial \phi^{2}}=0$
(a) (i) Set $f(\rho, \phi)=F(\rho) G(\phi)$ and use separation variable scheme to deduce the following two ordinary differential equations :
$\left\{\begin{array}{l}d\left(\rho \frac{d F(\rho)}{d \rho}\right) \\ \rho \frac{d \rho}{d \rho}=-k F(\rho) \\ \frac{d^{2} G(\phi)}{d \phi^{2}}=k G(\phi)\end{array}\right.$
where k is a separation constant of any value.
(4 marks)
(ii) Based on eq.(2), i.e., differential equation for ϕ, explain why the eigenvalues for k are $k=-m^{2}$ where $m=1,2,3, \ldots \ldots$
(iii) By direct substitution, show that $\rho^{m} \& \rho^{-m}$ are the two independent solution to eq.(1) with $k=-m^{2}$.

Question two (continued)

(b) The general solution for (a) is

$$
\begin{align*}
f(\rho, \phi) & =\sum_{m=1}^{\infty} f_{m}(\rho, \phi) \\
& =\sum_{m=1}^{\infty}\left(A_{m} \rho^{m}+B_{m} \rho^{-m}\right)\left(C_{m} \cos (m \phi)+D_{m} \sin (m \phi)\right) \tag{3}
\end{align*}
$$

where $A_{m}, B_{m}, C_{m} \& D_{m}$ are arbitrary constants. This general solution is subjected to the following four boundary conditions :
$B C(1): f_{m}(0, \phi)=0 \quad \forall 0 \leq \phi \leq \frac{\pi}{2}$
$B C(2): f_{m}(\rho, 0)=0 \quad \forall 0 \leq \rho \leq a$
$B C(3): f_{m}\left(\rho, \frac{\pi}{2}\right)=0 \quad \forall \quad 0 \leq \rho \leq a$
$B C(4): f(a, \phi)=V_{0} \quad \forall 0 \leq \phi \leq \frac{\pi}{2}$
(i) Apply $\mathrm{BC}(1)$ and deduce from eq.(3) that

$$
\begin{equation*}
f(\rho, \dot{\phi})=\sum_{m=1}^{\infty}\left(A_{m} \rho^{m}\right)\left(C_{m} \cos (m \phi)+D_{m} \sin (m \phi)\right) \tag{4}
\end{equation*}
$$

(ii) Apply $\mathrm{BC}(2)$ and deduce from eq.(4) that

$$
\begin{align*}
f(\rho, \phi) & =\sum_{m=1}^{\infty}\left(A_{m} \rho^{m}\right)\left(D_{m} \sin (m \phi)\right) \text { name }\left(A_{m} D_{m}\right) \text { as } E_{m} \\
& =\sum_{m=1}^{\infty}\left(E_{m} \rho^{m} \sin (m \phi)\right) \ldots \ldots \tag{5}
\end{align*}
$$

(iii) Apply $\mathrm{BC}(3)$ and deduce from eq.(5) that

$$
\begin{equation*}
f(\rho, \phi)=\sum_{n=1}^{\infty}\left(F_{n} \rho^{2 n} \sin (2 n \phi)\right) \tag{6}
\end{equation*}
$$

(3 marks)
where $\quad F_{n} \equiv E_{2 n} \quad \& \quad n=1,2,3, \cdots \cdots$
(iv) Apply $\mathrm{BC}(4)$ and find the values of F_{n} in terms of $V_{0}, a \& n$ and show that

$$
F_{n}=\frac{2 V_{0}(1-\cos (n \pi))}{n \pi a^{2 n}} \quad n=1,2,3, \cdots \cdots
$$

(8 marks)
(Hint : $\int_{\phi=0}^{\frac{\pi}{2}} \sin (2 n \phi) \sin (2 m \phi) d \phi=\left\{\begin{array}{lll}0 & \text { if } & n \neq m \\ \frac{\pi}{4} & \text { if } & n=m\end{array}\right.$)

Question three

(a) The point form of Ohm's law in a conductive region of conductivity σ is $\vec{J}=\sigma \vec{E}$ where $\vec{J} \& \vec{E}$ are the current density and electric field respectively. Show that it can lead to the commonly known Ohm's law $V=I R$ for a conducting wire of length L, cross-sectional area A, total flowing current I and the terminal voltage across the wire V where $R=\frac{L}{\sigma A}$.
(5 marks)
(b) According to modified Drude's model of electric conduction in the conductive material with conductivity σ under the applied electric field \vec{E}, the equation of motion for an average conduction electron in the conductor is
$m_{e} \frac{d \vec{v}_{d}}{d t}=-e \vec{E}-\frac{2 m_{e} \vec{v}_{d}}{\tau_{c}} \cdots \cdots$ (1) where $(-e) \& m_{e}$ are the charge and mass of an electron respectively.
(i) Explain briefly the meaning of $\vec{v}_{d}, \tau_{c} \&\left(-\frac{2 m_{e} \vec{v}_{d}}{\tau_{c}}\right)$ in the above equation.
(4 marks)
(ii) In the steady state situation, i.e., $\frac{d \vec{v}_{d}}{d t}=0$, use the equation of motion and the point form of Ohm's law to deduce that
$\sigma=\frac{n e^{2}}{2 m_{e}} \tau_{c}$ where $n \equiv$ number density of conduction electrons.
(Hint: $\vec{J}=\rho_{v} \vec{v}_{d}=-n e \vec{v}_{d}$)
(6 marks)
(iii) The pure metal potassium K possesses the following data at room temperature as atomic number $=39.098$, density $=871 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad$ and conductivity $=1.4 \times 10^{7} \frac{1}{\Omega m}$
(A) Calculate the number density of conduction electrons of the metal potassium with the knowledge of each potassium atom contributes one conduction electron.
(3 marks)
(B) Find the value of τ_{c} for metal potassium at room temperature.
(Hint: Avogadro number $=6.023 \times 10^{26} \frac{\text { atoms }}{\mathrm{kg}-\text { mole }}$) ($\mathbf{3}$ marks)
(iv) In the time-harmonic situation, i.e., $\vec{E}=\vec{e}_{E} E_{0} \cos (\omega t)=\vec{e}_{E} \operatorname{Re}\left\{E_{0} e^{i \omega t}\right\}$, set $\vec{v}_{d}=\vec{e}_{E} v_{d} \cos (\omega t+\phi)=\vec{e}_{E} \operatorname{Re}\left\{\hat{v}_{d} e^{i \omega t}\right\}$ where $\hat{v}_{d} \equiv v_{d} e^{i \phi}$, use eq. (1) to deduce that $\hat{v}_{d}=-\frac{e \tau_{c}}{2 m_{e}+i \omega m_{e} \tau_{c}} E_{0}$.

Question four

(a) A static current I_{1} flows in the N_{1} turn toroid wired around an iron core of cross section radius a and permeability μ, with its central axis coinciding with the z -axis as shown below:

(i) Use the closed loop $\left(l_{1}+l_{2}+l_{3}+l_{4}\right)$ drawn in the given diagram where $\vec{l}_{1}=\vec{e}_{z} b$ (outside the core), $\vec{l}_{2}=-\vec{e}_{\rho} c, \vec{l}_{3}=-\vec{e}_{z} b$ (inside the core) \& $\vec{l}_{4}=\vec{e}_{p} c$, set $\vec{B}=\vec{e}_{z} B_{z}(\rho)$ for $\rho \leq a$ \& $\vec{B}=0$ for $\rho>a$ and use the integral form of Ampere's law to find \vec{B} and show that $\vec{B}=\vec{e}_{z} \frac{\mu N_{1}}{L_{1}} I_{1}$ for $\rho \leq a$.
(5 marks)
(ii) Assuming the same \vec{B} obtained in (a)(i) is maintained throughout the iron core (which is a good assumption when $\mu \gg \mu_{0}$), find the total magnetic flux Ψ_{m} passing through the cross-section area πa^{2} of the iron core, i.e., $\Psi_{m}=\int_{\delta} \vec{B} \bullet d \vec{s}$ where $d \vec{s}=\vec{e}_{z} \rho d \rho d \phi, 0 \leq \rho \leq a \& 0 \leq \phi \leq 2 \pi$, and show that $\Psi_{m}=\frac{\mu N_{1} \pi a^{2}}{L_{1}} I_{1}$.

Question four (continued)

(iii) Find the mutual inductance M between the primary and secondary coils and the self-inductance L_{i} of the primary coil in terms of $a, L_{1}, N_{1}, N_{2} \& \mu$.
(3 marks)
(Hint : The total magnetic flux passing through the primary and secondary coils are $N_{1} \Psi_{m} \& N_{2} \Psi_{m}$ respectively where Ψ_{m} is obtained in (a)(ii))
(iv) Find the induced e.m.f. $V(t)$ of the secondary coil in terms of a, $L_{1}, N_{1}, N_{2}, \mu, I_{0} \& \omega$ if the primary coil carries a sinusoidal current of $I_{0} \sin (\omega t)$ instead of carrying a static current I_{1}.
(2 marks)
(b) The Maxwell's equations for the material region of parameters $\mu, \varepsilon \& \sigma$ are $\vec{\nabla} \bullet \vec{E}=0$
$\vec{\nabla} \cdot \vec{B}=0$
$\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\vec{\nabla} \times \vec{B}=\mu \sigma \vec{E}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t}$
(i) Deduce from them the following wave equation for \vec{E} as

$$
\nabla^{2} \vec{E}-\mu \sigma \frac{\partial \vec{E}}{\partial t}-\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
$$

(4 marks)
(ii) Set \vec{E} as $\left(\overrightarrow{\hat{E}}(\right.$ space $\left.) e^{i \omega t}\right)$ and substitute it into the above wave equation, to deduce the following time-harmonic equation for $\overrightarrow{\hat{E}}($ space) as $\nabla^{2} \overrightarrow{\hat{E}}($ space $)-\hat{\gamma}^{2} \overrightarrow{\hat{E}}($ space $)=0 \quad$ where $\quad \hat{\gamma}=\sqrt{i \omega \mu \sigma-\omega^{2} \mu \varepsilon}$
(3 marks)
(iii) Set the propagation constant $\hat{\gamma} \equiv \alpha+i \beta$, to deduce that
$\alpha=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1}$.
(6 marks)
(Hint : $\left.\sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos (\theta)}{2}} \& \cos (\theta)=\left(\sqrt{1+\tan ^{2}(\theta)}\right)^{-1}\right)$

Question five

(a) An uniform plane wave traveling along $+z$ direction with the field components $E_{x}(z) \& H_{y}(z)$ has a complex electric field amplitude $\hat{E}_{m}^{+}=100 e^{i \frac{\pi}{6}} \frac{V}{m}$ and propagates at a frequency $f=5 \times 10^{7} \mathrm{~Hz}$ in a material region has the parameters of $\mu=\mu_{0}, \varepsilon=2 \varepsilon_{0} \quad \& \frac{\sigma}{\omega \varepsilon}=0.3$.
(i) Find the values of the propagation constant $\hat{\gamma}(=\alpha+i \beta)$ and the intrinsic wave impedance $\hat{\eta}$ for this wave.
(4 marks)
(ii) Express the electric and magnetic fields in both their complex and real-time forms, with the numerical values of (a)(i) inserted.
(4 marks)
(iii) Find the values of the penetration depth, wave length and phase velocity of the given wave .
(3 marks)
(b) An uniform plane wave is incident normally upon an interface separating two regions . The incident wave is given as $\left(\hat{E}_{x 1}^{+}=\hat{E}_{m 1}^{+} e^{-\hat{y}_{1} z}, \hat{H}_{y 1}^{+}=\frac{\hat{E}_{m 1}^{+}}{\hat{\eta}_{1}} e^{-\hat{y}_{1} z}\right)$ and thus the reflected and transmitted wave can be written as $\left(\hat{E}_{x 1}^{-}=\hat{E}_{m 1}^{-} e^{+\hat{y}_{1} z}, \hat{H}_{y 1}^{-}=-\frac{\hat{E}_{m 1}^{-}}{\hat{\eta}_{1}} e^{+\hat{y}_{1} z}\right)$ and $\left(\hat{E}_{x 2}^{+}=\hat{E}_{m 2}^{+} e^{-\hat{y}_{2} z}, \hat{H}_{y 2}^{+}=\frac{\hat{E}_{m 2}^{+}}{\hat{\eta}_{2}} e^{-\hat{y}_{2} z}\right)$ respectively as shown below:

Question five (continued)

(i) From the boundary conditions at the interface, i.e., both total $\hat{E}_{x} \& \hat{H}_{y}$ are continuous at $\mathrm{z}=0$, deduce the following

$$
\left\{\begin{array}{l}
\hat{E}_{m 1}^{-}=\hat{E}_{m 1}^{+} \frac{\hat{\eta}_{2}-\hat{\eta}_{1}}{\hat{\eta}_{2}+\hat{\eta}_{1}} \tag{9marks}\\
\hat{E}_{m 2}^{+}=\hat{E}_{m 1}^{+} \frac{2 \hat{\eta}_{2}}{\hat{\eta}_{2}+\hat{\eta}_{1}}
\end{array}\right.
$$

(ii) If region 1 is air (i.e., $\hat{\eta}_{1}=120 \pi=377 \Omega$), region 2 is a lossy medium with parameters of $\left(\mu_{2}=\mu_{0}, \varepsilon_{2}=9 \varepsilon_{0}, \frac{\sigma_{2}}{\omega \varepsilon_{2}}=1\right)$, and the incident plane wave is having a complex amplitude of $\hat{E}_{m 1}^{+}=60 e^{i 50^{\circ}} \frac{\mathrm{V}}{\mathrm{m}}$ and propagates at a frequency of $f=10^{6} \mathrm{~Hz}$.
(A) Calculate the value of $\hat{\eta}_{2}$.
(B) Calculate the values of $\hat{E}_{m 2}^{+}$.

Useful informations

$$
\begin{aligned}
& e=1.6 \times 10^{-19} \mathrm{C} \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mu_{0}=4 \pi \times 10^{-7} \frac{H}{m} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \frac{F}{m} \\
& \alpha=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1} \\
& \beta=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1} \\
& \frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \hat{\eta}=\frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt[4]{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}} e^{i \frac{1}{2} \tan ^{-1}\left(\frac{\sigma}{\omega \varepsilon}\right)} . \\
& \eta_{0}=120 \pi \Omega=377 \Omega \\
& \beta_{0}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \\
& \oiint_{S} \vec{E} \cdot d \vec{s}=\frac{1}{\varepsilon} \iiint_{V} \rho_{v} d v \\
& \oiint_{S} \vec{B} \cdot d \vec{s} \equiv 0 \\
& \oint_{L} \vec{E} \cdot d \vec{l}=-\frac{\partial}{\partial t}\left(\iint_{S} \vec{B} \bullet d \vec{s}\right) \\
& \oint_{L} \vec{B} \bullet d \vec{l}=\mu \iint_{S} \vec{J} \bullet d \vec{s}+\mu \varepsilon \frac{\partial}{\partial t}\left(\iint_{S} \vec{E} \bullet d \vec{s}\right) \\
& \vec{\nabla} \cdot \vec{E}=\frac{\rho_{v}}{\varepsilon} \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu \vec{J}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t} \\
& \vec{J}=\sigma \vec{E}
\end{aligned}
$$

$\oiint_{S} \vec{F} \cdot d \vec{s} \equiv \oiiint_{V}(\vec{\nabla} \bullet \vec{F}) d v \quad$ divergence theorem
$\oint_{L} \vec{F} \bullet d \vec{l} \equiv \iint_{S}(\vec{\nabla} \times \vec{F}) \bullet d \vec{s} \quad$ Stokes' theorem
$\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F}) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} f) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} \times \vec{F}) \equiv \vec{\nabla}(\vec{\nabla} \cdot \vec{F})-\nabla^{2} \vec{F}$
$\vec{\nabla} f=\vec{e}_{x} \frac{\partial f}{\partial x}+\vec{e}_{y} \frac{\partial f}{\partial y}+\vec{e}_{z} \frac{\partial f}{\partial z}=\vec{e}_{\rho} \frac{\partial f}{\partial \rho}+\vec{e}_{\phi} \frac{1}{\rho} \frac{\partial f}{\partial \phi}+\vec{e}_{z} \frac{\partial f}{\partial z}$

$$
=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\vec{e}_{\phi} \frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi}
$$

$\vec{\nabla} \bullet \vec{F}=\frac{\partial\left(F_{x}\right)}{\partial x}+\frac{\partial\left(F_{y}\right)}{\partial y}+\frac{\partial\left(F_{z}\right)}{\partial z}=\frac{1}{\rho} \frac{\partial\left(F_{\rho} \rho\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}+\frac{\partial\left(F_{z}\right)}{\partial z}$

$$
=\frac{1}{r^{2}} \frac{\partial\left(F_{r} r^{2}\right)}{\partial r}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\theta} \sin (\theta)\right)}{\partial \theta}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}
$$

$\vec{\nabla} \times \vec{F}=\vec{e}_{x}\left(\frac{\partial\left(F_{z}\right)}{\partial y}-\frac{\partial\left(F_{y}\right)}{\partial z}\right)+\vec{e}_{y}\left(\frac{\partial\left(F_{x}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial x}\right)+\vec{e}_{z}\left(\frac{\partial\left(F_{y}\right)}{\partial x}-\frac{\partial\left(F_{x}\right)}{\partial y}\right)$
$=\frac{\vec{e}_{\rho}}{\rho}\left(\frac{\partial\left(F_{z}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} \rho\right)}{\partial \dot{z}}\right)+\vec{e}_{\phi}\left(\frac{\partial\left(F_{\rho}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial \rho}\right)+\frac{\vec{e}_{z}}{\rho}\left(\frac{\partial\left(F_{\phi} \rho\right)}{\partial \rho}-\frac{\partial\left(F_{\rho}\right)}{\partial \phi}\right)$
$=\frac{\vec{e}_{r}}{r^{2} \sin (\theta)}\left(\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial \theta}-\frac{\partial\left(F_{\theta} r\right)}{\partial \phi}\right)+\frac{\vec{e}_{\theta}}{r \sin (\theta)}\left(\frac{\partial\left(F_{r}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial r}\right)+\frac{\vec{e}_{\phi}}{r}\left(\frac{\partial\left(F_{\theta} r\right)}{\partial r}-\frac{\partial\left(F_{r}\right)}{\partial \theta}\right)$
where $\vec{F}=\vec{e}_{x} F_{x}+\vec{e}_{y} F_{y}+\vec{e}_{z} F_{z}=\vec{e}_{\rho} F_{\rho}+\vec{e}_{\phi} F_{\phi}+\vec{e}_{z} F_{z}=\vec{e}_{r} F_{r}+\vec{e}_{\theta} F_{\theta}+\vec{e}_{\phi} F_{\phi} \quad$ and
$d \vec{l}=\vec{e}_{x} d x+\vec{e}_{y} d y+\vec{e}_{z} d z=\vec{e}_{\rho} d \rho+\vec{e}_{\phi} \rho d \phi+\vec{e}_{z} d z=\vec{e}_{r} d r+\vec{e}_{\theta} r d \theta+\vec{e}_{\phi} r \sin (\theta) d \phi$
$\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$
$=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}}$

