UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF PHYSICS
SUPPLEMENTARY EXAMINATION 2012/2013
TITLE OF PAPER : ELECTROMAGNETIC THEORY
COURSE NUMBER : P331
TIME ALLOWED : THREE HOURSINSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVEQUESTIONS.EACH QUESTION CARRIES 25 MARKS.MARKS FOR DIFFERENT SECTIONS ARESHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS TEN PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P331 ELECTROMAGNETIC THEORY

Question one

(a) Two equal and opposite point charges $\pm q$ which form an electric dipole with a dipole moment of $\vec{p}=\vec{e}_{z} p=\vec{e}_{z}(q d)$, situated at the origin is shown below.

$$
\begin{aligned}
& \uparrow z \\
& \\
& \\
& \\
& P(0,0, z) \\
& \frac{d / 2}{d / 2}
\end{aligned} Q_{0}^{+q \cot \left(0,0, \frac{d}{2}\right)} \begin{aligned}
& 0 \text { at }\left(0,0,-\frac{d}{2}\right)
\end{aligned}
$$

(i) Use superposition principle to write down the electric scalar potential f at the field point $\mathrm{P}(0,0, \mathrm{z})$ due to those two point charges which form a dipole. Simplify it and deduce that

$$
f=\frac{p}{4 \pi \varepsilon_{0}\left(z^{2}-\left(\frac{d}{2}\right)^{2}\right)}
$$

(ii) Use $\vec{E} \equiv-\vec{\nabla} f$ to find the electric field \vec{E} at the field point $\mathrm{P}(0,0$, z $)$ due to the given dipole. Then show that $\vec{E} \approx \vec{e}_{z} \frac{p}{2 \pi \varepsilon_{0} z^{3}}$ if $z \gg d$. (6 marks)

Question one (continued)

(b) A circular ring L of radius a carries a constant counter clockwise line current I. The ring is situated on $z=0$ plane with the ring's centre at the origin as shown in the following diagram

where $\vec{e}_{R}^{(1)} \& \vec{e}_{R}^{(2)}$ are the unit vectors pointing from the small line segment current sources $\left(I d l^{\prime}\right) \vec{e}_{\phi}^{(1)} \&\left(I d l^{\prime}\right) \vec{e}_{\phi}^{(2)}$ respectively to the field point $P(0,0, z)$.
(i) Express $\vec{e}_{R}^{(1)} \& \vec{e}_{R}^{(2)}$ in terms of $\vec{e}_{\rho}^{(1)} ; \vec{e}_{\rho}^{(2)} ; \vec{e}_{z} \& \alpha$ and then show that $\vec{e}_{\phi}^{(1)} \times \vec{e}_{R}^{(1)}+\vec{e}_{\phi}^{(2)} \times \vec{e}_{R}^{(2)}=\bar{e}_{z} 2 \cos (\alpha)$
(Hint : $\vec{e}_{\phi}^{(1)}=-\bar{e}_{\phi}^{(2)} \& \vec{e}_{\rho}^{(1)}=-\bar{e}_{\rho}^{(2)}$)
(ii) From Biot-Savart law, i.e., $\vec{B}=\int_{L} \frac{\mu_{0}\left(\bar{e}_{\phi} I d l^{\prime}\right) \times \vec{e}_{R}}{4 \pi R^{2}}$, find the magnetic field \vec{B}. at the field point $\mathrm{P}(0,0, z)$ produced by the given ring current source.
(6 marks)
(Hint : use "pair" addition in (b)(i) and then integrate for half of the ring.)
(iii) If $z \gg a$, find the approximate expression of \vec{B} from the result obtained in (b)(ii). Rewrite it in terms of magnetic dipole moment of the given current loop m where $m \equiv I\left(\pi a^{2}\right)$ and compare it with the approximate expression of \vec{E} in (a)(ii).
Show that replacing $\left(\frac{p}{\varepsilon_{0}}\right)$ by $\left(\mu_{0} m\right)$ they are identical.

Question two

A U - tube capacitor extended very long into z direction with its cross section as shown below :

Its electric potential $f(x, y)$ in Cartesian coordinates for the region between two conductors, i.e., $0 \leq x \leq a \& 0 \leq y \leq b$, satisfies the following two dimensional Laplace equation :
$\frac{\partial^{2} f(x, y)}{\partial x^{2}}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}=0$.
(a) Set $f(x, y)=F(x) G(y)$ and use separation variable scheme
(i) to deduce the following two ordinary differential equations:

$$
\left\{\begin{array}{c}
\frac{d^{2} F(x)}{d x^{2}}=k F(x) \tag{1}\\
\frac{d^{2} G(y)}{d y^{2}}=-k G(y)
\end{array}\right.
$$

where k is the separation constant of any value.
(4 marks)
(ii) Based on the given initial conditions indicated in the above diagram, explain why only the negative values of k are desirable? Thus k can be written as $-K^{2}$.
(3 marks)
(iii) By direct substitution, show that $A \cosh (K y)+B \sinh (K y)$, where $A \& B$ are arbitrary constants, is a general solution to eq.(2) with $k=-K^{2}$ where K is a positive constant and a better alternative for the separation constant. ($\mathbf{3}$ marks)

Question two (continued)

(b) The general solution for (a) is

$$
\begin{align*}
f(x, y) & =\sum_{\forall K} f_{K}(x, y) \\
& =\sum_{\forall K}\left(A_{K} \cos (K x)+B_{K} \sin (K x)\right)\left(C_{K} \cosh (K y)+D_{K} \sinh (K y)\right) \tag{3}
\end{align*}
$$

where $A_{K}, B_{K}, C_{K} \& D_{K} \quad$ are arbitrary constants. This general solution is subjected to the following four boundary conditions:
$B C(1): f_{K}(0, y)=0 \quad \forall 0 \leq y \leq b$
$B C(2): f_{K}(a, y)=0 \quad \forall 0 \leq y \leq b$
$B C(3): f_{K}(x, 0)=0 \quad \forall 0 \leq x \leq a$
$B C(4): f(x, b)=V_{0} \quad \forall 0 \leq x \leq a$
(i) Apply $\mathrm{BC}(1)$ and deduce from eq.(3) that

$$
\begin{equation*}
f(x, y)=\sum_{\forall K}\left(B_{K} \sin (K x)\right)\left(C_{K} \cosh (K y)+D_{K} \sinh (K y)\right) \tag{4}
\end{equation*}
$$

(2 marks)
(ii) Apply $\mathrm{BC}(3)$ and deduce from eq.(4) that

$$
\begin{align*}
f(x, y) & =\sum_{\forall K}\left(B_{K} \sin (K x)\right)\left(D_{K} \sinh (K y)\right) \text { name }\left(B_{K} D_{K}\right) \text { as } E_{K} \\
& =\sum_{\forall K}\left(E_{K} \sin (K x) \sinh (K y)\right) \cdots \cdots \tag{5}
\end{align*}
$$

(2 marks)
(iii) Apply $\mathrm{BC}(2)$ and deduce from eq.(5) that
$f(x, y)=\sum_{n=1}^{\infty}\left(E_{n} \sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi y}{a}\right)\right) \quad \cdots \cdots$ (6)
(3 marks)
(iv) Apply $\mathrm{BC}(4)$ and find the values of E_{n} in terms of $V_{0}, a \& b$ and show that $E_{n}=\frac{2 V_{0}(1-\cos (n \pi))}{n \pi \sinh \left(\frac{n \pi b}{a}\right)} \quad n=1,2,3, \cdots \ldots$
. Also write down the specific
solution to this given boundary value problem.
(8 marks)
(Hint : $\int_{x=0}^{a} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi x}{a}\right) d x=\left\{\begin{array}{lll}0 & \text { if } & n \neq m \\ \frac{a}{2} & \text { if } & n=m\end{array}\right.$)

Question three

A static current I flows in the primary coil of n_{1} turn toroid, wired around an iron ring core of magnetic permeability μ with the square cross-section area $(b-a)^{2}$ as shown below:

(a) Use the integral Ampere's law, choose and draw proper closed loops to find the magnetic field \vec{B} in terms of $\rho, n_{1}, \mu \& I$ within the iron core, i.e., $a \leq \rho \leq b \& 0 \leq z \leq(b-a)$ region.
($1+6$ marks)
(b) Find the total magnetic flux Ψ_{m} passing through the cross-section area $(b-a)^{2}$ of the iron ring in counter clockwise sense, i.e., $\int_{\delta} \vec{B} \bullet d \vec{s}$ where $S: a \leq \rho \leq b, 0 \leq z \leq(b-a) \& d \vec{s}=\vec{a}_{\phi} d \rho d z$, in terms of $a, b, n_{1}, \mu \& I$.
(6 marks)
(c) Find the self-inductance L of the primary coil as well as the mutual inductance M of the secondary coil due to the primary coil in terms of $a, b, \mu, n_{1} \& n_{2}$.
(5 marks)
(d) (i) If the primary coil carries a sinusoidal current of $I_{0} \sin (\omega t)$ instead of carrying a static current I, find the induced e.m.f. $V_{2}(t)$ for the secondary coil in terms of $a, b, \omega, n_{1}, n_{2}, \mu \& I_{0}$ under quasi static situation.
(ii) If the potential drop for the primary coil due to its resistance is negligible compared to the one due to its self-inductance, i.e., $V_{1}(t) \approx L \frac{d I}{d t}$, show that

$$
\begin{equation*}
\frac{\left|V_{2}(t)\right|}{\left|V_{1}(t)\right|}=\frac{n_{2}}{n_{1}} \tag{3marks}
\end{equation*}
$$

Question four

(a) The Maxwell's equations for the empty space are

$$
\begin{align*}
& \vec{\nabla} \bullet \vec{E}=0 \tag{1}\\
& \vec{\nabla} \bullet \vec{B}=0 \tag{2}\\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{3}\\
& \vec{\nabla} \times \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \tag{4}
\end{align*}
$$

(i) Deduce from them the following wave equation for \vec{B} as

$$
\nabla^{2} \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
$$

(4 marks)
(ii) Given $\vec{B}=\vec{e}_{x} B_{m} \cos \left(\omega t+\omega \sqrt{\mu_{0} \varepsilon_{0}} z+\phi\right)$, where $B_{m}, \omega \& \phi$ are constants,
(A) by direct substitution show that it is a solution to eq.(5) in (a)(i).
(4 marks)
(B) setting its corresponding solution of \vec{E} as

$$
\begin{align*}
& \vec{E}=\vec{e}_{x} E_{x}(z, t)+\vec{e}_{y} E_{y}(z, t)+\vec{e}_{z} E_{z}(z, t) \text {, from eq.(3) deduce that } \\
& E_{y}(z, t)=\left(\frac{B_{m}}{\sqrt{\mu_{0} \varepsilon_{0}}}\right) \cos \left(\omega t+\omega \sqrt{\mu_{0} \varepsilon_{0}} z+\phi\right) \quad \text { (} 6 \text { marl } \tag{6marks}
\end{align*}
$$

(b) An uniform plane wave traveling along +z direction with the field components $\hat{E}_{x}(z) \& \hat{H}_{y}(z)$ has a complex electric field amplitude $\hat{E}_{m}^{+}=40 e^{i 50^{\circ}} \frac{V}{m}$ and propagates at a frequency $f=8 \times 10^{6} \mathrm{~Hz}$ in a material region having the parameters of $\mu=8 \mu_{0}, \varepsilon=2 \varepsilon_{0} \& \frac{\sigma}{\omega \varepsilon}=1$.
(i) Find the values of the propagation constant $\hat{\gamma}(=\alpha+i \beta)$ and the intrinsic wave impedance $\hat{\eta}$ for this wave.
(4 marks)
(ii) Express the electric and magnetic fields in both their complex and real-time forms, with the numerical values of (a)(i) inserted.
(4 marks)
(iii) Find the values of the penetration depth, wave length and phase velocity of the given wave.
(3 marks)

Question five

An uniform plane wave $\left(\hat{E}_{x 1}^{+}, \hat{H}_{y 1}^{+}\right)$, operating at $f=10^{8} \mathrm{~Hz}$, is normally incident upon a lossless plate of quarter wavelength thickness, i.e., $d_{2}=\frac{\lambda_{2}}{4}$, with parameters of $\left(\mu_{2}=\mu_{0}, \varepsilon_{2}=9 \varepsilon_{0}\right)$ as shown below :

$0_{1}, 0_{2} \& 0_{3}$ are the respective origins for region $1,2 \& 3$ chosen at the first and second interface. (Both region 1 and region 3 are air regions.)
(a) Define for the $i^{\text {th }}$ region $(i=1,2,3)$ the reflection coefficient $\hat{\Gamma}_{i}(z)$ and the total wave impedance $\hat{Z}_{i}(z)$ and deduce the following:

$$
\begin{equation*}
\hat{Z}_{i}(z)=\hat{\eta}_{i} \frac{1+\hat{\Gamma}_{i}(z)}{1-\hat{\Gamma}_{i}(z)} \tag{6marks}
\end{equation*}
$$

(b) (i) Find the values of $\hat{\gamma}_{1}, \hat{\gamma}_{2}, \hat{\gamma}_{3}, \lambda_{2} \& \hat{\eta}_{2}$.

$$
\begin{equation*}
\left(\text { Note : } \hat{\eta}_{1}=\hat{\eta}_{3}=120 \pi \Omega \text { and } \alpha_{1}=\alpha_{2}=\alpha_{3}=0\right) \tag{4marks}
\end{equation*}
$$

(ii) Starting with $\hat{\Gamma}_{3}(z)=0$ for the rightmost region, i.e., region 3 , and using the boundary condition that \hat{Z} is continuous at the interface, find the values of $\hat{Z}_{3}(0), \hat{Z}_{2}(0), \hat{\Gamma}_{2}(0), \hat{\Gamma}_{2}\left(-d_{2}\right), \hat{Z}_{2}\left(-d_{2}\right), \hat{Z}_{1}(0) \& \hat{\Gamma}_{1}(0)$.
(9 marks)
(iii) Find the value of $\hat{E}_{m 1}^{-} \& \hat{E}_{m 2}^{+}$if given $\hat{E}_{m 1}^{+}=80 e^{i 0} \frac{V}{m}$.

Useful informations

$$
\begin{aligned}
& e=1.6 \times 10^{-19} C \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mu_{0}=4 \pi \times 10^{-7} \frac{H}{m} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \frac{F}{m} \\
& \alpha=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1} \\
& \beta=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1} \\
& \frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \frac{m}{s} \\
& \hat{\eta}=\frac{\sqrt{\mu}}{\sqrt{\varepsilon}} \\
& \sqrt[4]{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}} e^{i \frac{1}{2} \cdot \tan -1\left(\frac{\sigma}{\omega \varepsilon}\right)} \\
& \eta_{0}=120 \pi \Omega=377 \Omega \\
& \beta_{0}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \\
& \oiint_{S} \vec{E} \bullet d \vec{s}=\frac{1}{\varepsilon} \iiint_{V} \rho_{v} d v \\
& \oiint_{S} \vec{B} \bullet d \vec{s} \equiv 0 \\
& \oint_{L} \vec{E} \bullet d \vec{l}=-\frac{\partial}{\partial t}\left(\iint_{S} \vec{B} \bullet d \vec{s}\right) \\
& \oint_{L} \vec{B} \bullet d \vec{l}=\mu \iint_{S} \vec{J} \bullet d \vec{s}+\mu \varepsilon \frac{\partial}{\partial t}\left(\iint_{S} \vec{E} \bullet d \vec{s}\right) \\
& \vec{\nabla} \bullet \vec{E}=\frac{\rho_{v}}{\varepsilon} \\
& \vec{\nabla} \bullet \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu \vec{J}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t} \\
& \vec{J}=\sigma \vec{E} \\
& \hline
\end{aligned}
$$

$\oiint_{s} \vec{F} \bullet d \bar{s} \equiv \oiiint_{v}(\vec{\nabla} \bullet \vec{F}) d v \quad$ divergence theorem
$\oint_{L} \vec{F} \bullet d \vec{l} \equiv \iint_{S}(\vec{\nabla} \times \vec{F}) \bullet d \vec{s} \quad$ Stokes' theorem
$\vec{\nabla} \bullet(\vec{\nabla} \times \vec{F}) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} f) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} \times \vec{F}) \equiv \vec{\nabla}(\vec{\nabla} \bullet \vec{F})-\nabla^{2} \vec{F}$
$\vec{\nabla} f=\vec{e}_{x} \frac{\partial f}{\partial x}+\vec{e}_{y} \frac{\partial f}{\partial y}+\vec{e}_{z} \frac{\partial f}{\partial z}=\vec{e}_{\rho} \frac{\partial f}{\partial \rho}+\vec{e}_{\phi} \frac{1}{\rho} \frac{\partial f}{\partial \phi}+\vec{e}_{z} \frac{\partial f}{\partial z}$

$$
=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\vec{e}_{\phi} \frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi}
$$

$\vec{\nabla} \bullet \vec{F}=\frac{\partial\left(F_{x}\right)}{\partial x}+\frac{\partial\left(F_{y}\right)}{\partial y}+\frac{\partial\left(F_{z}\right)}{\partial z}=\frac{1}{\rho} \frac{\partial\left(F_{\rho} \rho\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}+\frac{\partial\left(F_{z}\right)}{\partial z}$

$$
=\frac{1}{r^{2}} \frac{\partial\left(F_{r} r^{2}\right)}{\partial r}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\theta} \sin (\theta)\right)}{\partial \theta}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}
$$

$\vec{\nabla} \times \vec{F}=\vec{e}_{x}\left(\frac{\partial\left(F_{z}\right)}{\partial y}-\frac{\partial\left(F_{y}\right)}{\partial z}\right)+\vec{e}_{y}\left(\frac{\partial\left(F_{x}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial x}\right)+\vec{e}_{z}\left(\frac{\partial\left(F_{y}\right)}{\partial x}-\frac{\partial\left(F_{x}\right)}{\partial y}\right)$
$=\frac{\vec{e}_{\rho}}{\rho}\left(\frac{\partial\left(F_{z}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} \rho\right)}{\partial z}\right)+\vec{e}_{\phi}\left(\frac{\partial\left(F_{\rho}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial \rho}\right)+\frac{\vec{e}_{z}}{\rho}\left(\frac{\partial\left(F_{\phi} \rho\right)}{\partial \rho}-\frac{\partial\left(F_{\rho}\right)}{\partial \phi}\right)$
$=\frac{\vec{e}_{r}}{r^{2} \sin (\theta)}\left(\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial \theta}-\frac{\partial\left(F_{\theta} r\right)}{\partial \phi}\right)+\frac{\vec{e}_{\theta}}{r \sin (\theta)}\left(\frac{\partial\left(F_{r}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial r}\right)+\frac{\vec{e}_{\phi}}{r}\left(\frac{\partial\left(F_{\theta} r\right)}{\partial r}-\frac{\partial\left(F_{r}\right)}{\partial \theta}\right)$
where $\vec{F}=\vec{e}_{x} F_{x}+\vec{e}_{y} F_{y}+\vec{e}_{z} F_{z}=\vec{e}_{\rho} F_{\rho}+\vec{e}_{\phi} F_{\phi}+\vec{e}_{z} F_{z}=\vec{e}_{r} F_{r}+\vec{e}_{\theta} F_{\theta}+\vec{e}_{\phi} F_{\phi} \quad$ and
$d \vec{l}=\vec{e}_{x} d x+\vec{e}_{y} d y+\vec{e}_{z} d z=\vec{e}_{\rho} d \rho+\vec{e}_{\phi} \rho d \phi+\vec{e}_{z} d z=\bar{e}_{r} d r+\vec{e}_{\theta} r d \theta+\vec{e}_{\phi} r \sin (\theta) d \phi$
$\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$

$$
=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}}
$$

$\hat{Z}_{i}(z)=\hat{\eta}_{i} \frac{1+\hat{\Gamma}_{i}(z)}{1-\hat{\Gamma}_{i}(z)}, \hat{\Gamma}_{i}(z)=\frac{\hat{Z}_{i}(z)-\hat{\eta}_{i}}{\hat{Z}_{i}(z)+\hat{\eta}_{i}} \quad \&$
$\hat{\Gamma}_{i}\left(z^{\prime}\right)=\hat{\Gamma}_{i}(z) e^{2 \hat{\gamma}_{(}\left(z^{-}-z\right)} \quad$ where $z^{\prime} \& z$ are two pointsin $i^{\text {th }}$ region

