```UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE
```

DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2013/2014

TITLE OF THE PAPER: COMPUTATIONAL METHODS-I

COURSE NUMBER: P262

TIME ALLOWED:
SECTION A: ONE HOUR
SECTION B: TWO HOURS

INSTRUCTIONS:

THE ARE TWO SECTIONS IN THIS PAPER:

- SECTION A: IS A WRITTEN PART. ANSWER THIS SECTION ON THE ANSWER BOOK. IT CARRIES A TOTAL OF 40 MARKS.
- SECTION B: IS A PRACTICAL PART WHICH YOU WILL WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. IT CARRIES A TOTAL OF 60 MARKS.

Answer all the questions from Section A and all the questions from Section B. Marks for different sections of each Question are shown in the right hand margin.

THE PAPER HAS 5 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Question 1

(a) Translate the following expressing into Maple statements.
(i) $\sin (\pi / 3)$ up to 10 decimal points
(ii) $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\ldots \ldots .+\frac{1}{10000}$
(iii) $\int_{a}^{b}\left(\exp \left(-x^{2} / 2\right)+x^{4} / 4!\right) d x$
(iv) $\frac{d^{5}}{d x^{5}}(\ln x y)$
(b) Explain the difference between the following Maple statements:
(i) $a:=3 * x+2 * I:$ and $a:=3 * x+2 * I$;
(ii) dsolve $\left(x^{\wedge} 5 / 5-x^{\wedge} 4 / 5-7 * x^{\wedge} 3+10\right)$; and dsolve $\left(x^{\wedge} 5 / 5-x^{\wedge} 4 / 5-7.0 *\right.$ $\left.x^{\wedge} 3+10\right) ;$
(c) Determine the output of the following Maple commands.
(i) $>\operatorname{sum}(\mathrm{n}, \mathrm{n}=1 . .10)$;
(ii) $>[\operatorname{seq}(2 * n *(n+1), n=1 . .5)]$;
(iii) $>d:=(x, y, z) \rightarrow \operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2\right): d(0,1,1)$;
(iv) $>(1+I)^{\wedge} 2$;
(d) Ten gas particles have speeds of $5.00,8.00,12.0,12.0,12.0,14.0,14.0,17.0,18.0$ and $20.8 \mathrm{~m} / \mathrm{s}$. Write a Maple program that compute the average speed of the particles and the root-mean-square of the speed of the particles.

Question 2

(a) When using Maple to find the roots of the equation

$$
x^{5}+x^{4}-x=0,
$$

you obtain the following response
$>a:=\operatorname{solve}\left(x^{\wedge} 4+x^{\wedge} 3-x, x\right)$;
$a:=0, \operatorname{RootOf}\left(-Z^{4}+Z^{2}-1\right.$, index $\left.=1\right), \operatorname{RootOf}\left(-Z^{4}+Z^{2}-1\right.$, index $\left.=2\right)$, $\operatorname{RootOf}(-Z+Z-1$, index $=3), \operatorname{RootOf}(-Z+Z-1$, index $=4)$
(i) What is the meaning of the above response?
(ii) How do you extract all the roots?
(iii) If we use fsolve, Maple displays only the real roots, how can you determine the other complex roots?
(b) In an $R L C$ circuit the frequency f is given by the equation

$$
f=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 C^{2}}}
$$

For $L=1.5 \times 10^{-14} H$ and $R=3 k \Omega$,
(i) Write a Maple code that calculates C for $f=100 \mathrm{~Hz}$ numerically in Maple, using the fsolve command.
[4 marks]
(ii) Now compute C for a range of frequencies, $f=100 \mathrm{~Hz}$ to $f=1 \mathrm{kHz}$ in steps of 100 Hz . NB: The above information means f can be generated as a list, with the $i^{\text {th }}$ term $f[i]=100 * i$ and each value of $f[i]$ will correspond to a capacitance $C[i]$
(c) The Hamiltonian matrix for a quantum system is given as

$$
\left[\begin{array}{cccc}
-2 B & 0 & J \\
0 & 0 & J & 0 \\
0 & J & 0 & 0 \\
J & 0 & 0 & 2 B
\end{array}\right]
$$

Write a Maple program the compute to determinant of the matrix.

The electrostatic potential $V(x)$ inside a cylinder was measured and the following results were obtained :

$$
\begin{align*}
& V(0.0)=52.640, V(0.2)=48.292, V(0.4)=38.270 \\
& V(0.6)=25.844, V(0.8)=12.648, \text { and } V(1.0)=0.0 \tag{1}
\end{align*}
$$

where x is the distance from the center of the cylinder in metres and V is given in Volts.
(a) Plot the a graph of $V(x)$ versus x using the given data set.

Symmetry arguments requires that $V(x)$ be an even function of x. Given that

$$
V(x)=\sum_{n=0}^{5} a_{2 n} x^{2 n}=a_{0}+a_{2} x^{2}+a_{4} x^{4}+a_{6} x^{6}+a_{8} x^{8}+a_{10} x^{10}
$$

(b) Use the LeastSquare procedure in Maple to estimate the values of $a_{2 n}$ from the information given in Eq. (1).
(c) At what distance between $x=0.0$ and $x=1.0 \mathrm{~m}$ is the electric potential equal to 20 Volts? You may need to find the roots of the equation

$$
V(x)-20=0
$$

The dynamics of a charged particle in a magnetic field is described by Newton's second law:

$$
\frac{d \mathbf{v}}{d t}=\frac{q}{m} \mathbf{v} \times \mathbf{B}-\frac{\gamma}{m} \mathbf{v}
$$

where \mathbf{B} is the magnetic field, γ represent the coefficient of a damping force, m and q corresponds to the mass and the charge of the particle, respectively.
(a) Uniform field. When \mathbf{B} is in the z-direction, then the dynamics are given by four equation:

$$
\begin{gather*}
\frac{d}{d t} x(t)=v_{x}(t), \frac{d}{d t} v_{x}(t)=b_{0} v_{y}(t)-b_{1} v_{x}(t) \tag{2}\\
\frac{d}{d t} y(t)=v_{y}(t), \frac{d}{d t} v_{y}(t)=-b_{0} v_{x}(t)-b_{1} v_{y}(t) \tag{3}
\end{gather*}
$$

(i) Write a program to simulate the dynamics of the charged particle. Assume that the initial velocity of the particle is $\mathbf{v}(t=0)=[v x(0), v y(0)]=(1,0)$ and the initial position $\mathbf{r}(t=0)=[x(0), y(0)]=(0,0)$. You may choose the Euler method in Maple to find the solutions with the stepsize $=0.001$. $b_{0}=2.0$, and $b_{1}=0$. Plot the trajectory of the particle $[\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})]$ for t $=0 . .10$. What is the shape of the trajectory of the particle?
[15 marks]
(ii) Choose an appropriate value(s) of b_{1} to investigate the effects of the damping force. Plot the trajectory of the particle under the influence of a damping force with the same initial conditions as (i). Discuss your observations.
[10 marks]
(b) Crossed Electric-Magnetic fields. Now suppose an electric field $\mathbf{E}=E_{0} \hat{\mathbf{x}}$ is introduced into the system. In this case we need to add an extra term in the equation describing the change in x -component of the velocity :

$$
\frac{d v_{x}(t)}{d t}=b_{0} v_{y}(t)-b_{1} v_{x}(t)+E,
$$

whilst the other equations remain the same. Assume that $E=2.0, b_{0}=2.0$, and $b_{1}=0$, in dimensionless units. Show that the particle released with an initial velocity $\mathbf{v}(t)=0$ from the origin will move like a leaping frog along the y-axis. Explain why this is so.

