```
UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF PHYSICS
MAIN EXAMINATION 2013/2014
TITLE OF PAPER : MATHEMATICAL METHODS FOR
PHYSICISTS
COURSE NUMBER : P272
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
                                    EACH QUESTION CARRIES 25 MARKS.
                                    MARKS FOR DIFFERENT SECTIONS ARE
                                    SHOWN IN THE RIGHT-HAND MARGIN.
```

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question one

(a) Given a scalar function as $f(r, \theta, \phi)=r^{2}-3 r^{2} \sin (\theta)+2 r^{2} \cos (\phi)$ in spherical coordinates, find the value of $\vec{\nabla} f$ at the point $P:\left(r=10, \theta=\frac{\pi}{2}, \phi=\frac{7 \pi}{6}\right)$.
(b) Given a vector field as $\vec{F}=\vec{e}_{x} 2 y^{2}+\vec{e}_{y} 4 x y-\vec{e}_{z} 3 z^{2}$ in Cartesian coordinates, find the value of $\int_{P_{1}, L}^{P_{2}} \vec{F} \bullet d \vec{l}$ where $P_{1}:(-5,-5,1) \quad \& \quad P_{2}:(5,5,1)$ and if
(i) $L:$ a straight line from P_{1} to P_{2} on $z=1$ plane,
(5 marks)
(ii) L: a semi-circular path from P_{1} to P_{2} in counter clockwise sense on $\mathrm{z}=1$ plane
Compare this answer with that obtained in (b)(i) and comment on the conservative property of the given vector field.
(Hint : circular path with radius of $5 \sqrt{2} \&$ centered at $(0,0,1)$, thus $x=5 \sqrt{2} \cos (t) \& y=5 \sqrt{2} \sin (t)$ where t is integrated
from $\pi+\frac{\pi}{4}$ to $2 \pi+\frac{\pi}{4}$ to follow the counter clockwise sense.
$\left.\int \sin ^{3}(t) d t=\frac{1}{3} \cos ^{3}(t)-\cos (t) \& \int \sin (t) \cos ^{2}(t) d t=-\frac{1}{3} \cos ^{3}(t)\right)$
(iii) Find $\vec{\nabla} \times \vec{F}$. Does it agree with your comment in (b)(ii)?
($3+1$ marks $)$

Given a vector field as $\vec{F}=\vec{e}_{\rho} 3 \rho z+\vec{e}_{\phi} 5 \rho^{2} \sin (\phi)+\vec{e}_{z} 2 \rho^{2}$ in cylindrical coordinates,
(a) find the value of $\oint_{S} \vec{F} \bullet d \vec{S}$ if the closed surface S is the cover surface of a cylinder of radius $5 \&$ height 10 with its central axis coinciding with the z -axis, i.e., $S=S_{1}+S_{2}+S_{3} \quad$ where
$S_{1}: z=0,0 \leq \rho \leq 5,0 \leq \phi \leq 2 \pi \& d \vec{s}=-\vec{e}_{z}(d \rho)(\rho d \phi)$
$S_{2}: z=10,0 \leq \rho \leq 5,0 \leq \phi \leq 2 \pi \& d \vec{s}=+\vec{e}_{z}(d \rho)(\rho d \phi)$
$S_{3}: \rho=5,0 \leq \phi \leq 2 \pi, 0 \leq z \leq 10 \& d \vec{s}=\vec{e}_{\rho}(\rho d \phi)(d z) \xrightarrow{\rho=5} \vec{e}_{\rho}(5 d \phi)(d z)$
(13 marks)
(b) (i) find $\vec{\nabla} \bullet \vec{F}$,
(ii) find the value of $\iiint(\vec{\nabla} \bullet \vec{F}) d v$ where

V is the volume enclosed by the given closed surface S described in (b)(i).
Compare this value with the answer obtained in (b)(i) and make a brief comment .
($6+1$ marks)
(Hint : $d v=(d \rho)(\rho d \phi)(d z)$ where $0 \leq \rho \leq 5,0 \leq \phi \leq 2 \pi \& 0 \leq z \leq 10)$

Given the following periodic function of period 10 and plotted for two periods from $t=0$ to $\mathrm{t}=20$ as below:

i.e., for one period of $t=0$ to $t=10, f(t)$ can be wholly described as :

$$
f(t)=\left\{\begin{array}{rll}
2 t & \text { if } & 0<t<5 \\
-2 t+20 & \text { if } & 5<t<10
\end{array}\right.
$$

(a) Its Fourier series representation is $f(t)=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi t}{5}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi t}{5}\right)$.
(i) What special property of the given $f(t)$ implies that all the Fourier sine series coefficients should be zero, i.e., $b_{n}=0 \quad \forall n$.
(2 mark)
(ii) Find all the Fourier cosine series coefficients and show that $a_{0}=5 \quad \&$ $a_{n}=\frac{20(\cos (n \pi)-1)}{n^{2} \pi^{2}} \quad n=1,2,3, \cdots \cdots$.
(b) If the above given $f(t)$ is the non-homogeneous term for the following non-homogeneous differential equation $\frac{d^{2} y(t)}{d t^{2}}+4 y(t)=f(t)$,
(i) find the particular solution $y_{p}(t)$ to the given periodical $\mathrm{f}(\mathrm{t})$ represented by its Fourier series in (a) and show that
$y_{p}(t)=\frac{5}{4}+\sum_{n=1}^{\infty}\left(\frac{500(\cos (n \pi)-1)}{n^{2} \pi^{2}\left(-n^{2} \pi^{2}+100\right)} \cos \left(\frac{n \pi t}{5}\right)\right)$
(11 marks)
(ii) Find the general solution $y_{h}(t)$ to the homogeneous part of the given differential equation, i.e., $\frac{d^{2} y(t)}{d t^{2}}+4 y(t)=0$, and thus write down the general solution to the non-homogeneous differential equation. ($\mathbf{3}$ marks)
(a) Given the following first order differential equation as :
$\frac{d y(x)}{d x}+5 y(x)=0$, set $\quad y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s} \quad \& \quad a_{0} \neq 0$ and utilizing the power series method,
(i) write down its indicial equations and show that $s=0$,
(3 marks)
(ii) write down its recurrence relation. Set $a_{0}=1$ and use the recurrence relation to find the values of $a_{1}, a_{2} \& a_{3}$ and thus write down its independent solution in power series form truncated up to a_{3} term.
(8 marks)
(b) An elastic string of length 10 is fixed at its two ends, i.e., at $x=0 \quad \& \quad x=10$, and its transverse deflection $u(x, t)$ satisfies the following one-dimensional wave equation $\frac{\partial^{2} u(x, t)}{\partial t^{2}}=9 \frac{\partial^{2} u(x, t)}{\partial x^{2}}$,
(i) by direct substitution, show that $u(x, t)=\sum_{n=1}^{\infty} E_{n} \sin \left(\frac{n \pi x}{10}\right) \cos \left(\frac{3 n \pi t}{10}\right)$ satisfies the fixed end conditions $u(0, t)=0=u(10, t)$ as well as the condition of $\left.\frac{\partial u(x, t)}{\partial t}\right|_{t=0}=0 \quad$ assuming there is no initial vibrating speed.
(ii) Furthermore, if the initial position of the string, i.e., $u(x, 0)$, is given as
$u(x, 0)=\left\{\begin{array}{ccc}x & \text { if } & 0 \leq x \leq 5 \\ -x+10 & \text { if } 5 \leq x \leq 10\end{array}\right.$, and deduce that
$E_{n}=\frac{40}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right) \quad \forall n=1,2,3, \cdots \cdots$
(10 marks)
(hint : $\quad \int_{x=0}^{10} \sin \left(\frac{n \pi x}{10}\right) \sin \left(\frac{m \pi x}{10}\right) d x=\left\{\begin{array}{lll}0 & \text { if } & n \neq m \\ 5 & \text { if } & n=m\end{array} \quad \&\right.$
$\left.\int x \sin \left(\frac{n \pi x}{10}\right) d x=\frac{100}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{10}\right)-\frac{10}{n \pi} x \cos \left(\frac{n \pi x}{10}\right)\right)$

Question five

Two simple harmonic oscillators are joined by a spring with a spring constant k_{12} as shown in the diagram below :

The equations of motion for this coupled oscillator system ignoring friction are given as
$\left\{m_{1} \frac{d^{2} x_{1}(t)}{d t^{2}}=-\left(k_{1}+k_{12}\right) x_{1}(t)+k_{12} x_{2}(t)\right.$
$m_{2} \frac{d^{2} x_{2}(t)}{d t^{2}}=k_{12} x_{1}(t)-\left(k_{2}+k_{12}\right) x_{2}(t)$
where $x_{1} \& x_{2}$ are horizontal displacements of $m_{1} \& m_{2}$ measured from their respective resting positions.
If given $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}, k_{1}=2 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{2}=4 \frac{\mathrm{~N}}{\mathrm{~m}} \& k_{12}=6 \frac{\mathrm{~N}}{\mathrm{~m}}$,
(a) set $x_{1}(t)=X_{1} e^{i \omega t} \quad \& \quad x_{2}(t)=X_{2} e^{i \omega t}$, then the above given equations can be deduced to the following matrix equation $A X=-\omega^{2} X$ where

$$
A=\left(\begin{array}{cc}
-8 & 6 \\
3 & -5
\end{array}\right) \quad \& \quad X=\binom{X_{1}}{X_{2}}
$$

(b) find the eigenfrequencies ω of the given coupled system,
(c) find the eigenvectors X of the given coupled system corresponding to each eigenfrequencies found in (b),
(6 marks)
(d) find the normal coordinates of the given coupled system,
(e) write down the general solutions for $x_{1}(t) \& x_{2}(t)$.
(3 marks)

The transformations between rectangular and spherical coordinate systems are :
$\left\{\begin{array}{c}x=r \sin (\theta) \cos (\phi) \\ y=r \sin (\theta) \sin (\phi) \\ z=r \cos (\theta)\end{array} \quad \& \quad\left\{\begin{array}{c}r=\sqrt{x^{2}+y^{2}+z^{2}} \\ \theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\ \phi=\tan ^{-1}\left(\frac{y}{x}\right)\end{array}\right.\right.$
The transformations between rectangular and cylindrical coordinate systems are :

$$
\left.\begin{array}{l}
\left\{\begin{array} { l }
{ x = \rho \operatorname { c o s } (\phi) } \\
{ y = \rho \operatorname { s i n } (\phi) } \\
{ z = z }
\end{array} \quad \& \quad \left\{\begin{array}{c}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
z=z
\end{array}\right.\right. \\
\vec{\nabla} f=\vec{e}_{1} \frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}}+\vec{e}_{2} \frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}}+\vec{e}_{3} \frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}}
\end{array}\right\} \begin{aligned}
& \vec{\nabla} \bullet \vec{F}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(F_{1} h_{2} h_{3}\right)}{\partial u_{1}}+\frac{\partial\left(F_{2} h_{1} h_{3}\right)}{\partial u_{2}}+\frac{\partial\left(F_{3} h_{1} h_{2}\right)}{\partial u_{3}}\right) \\
& \vec{\nabla} \times \vec{F}=\frac{\vec{e}_{1}}{h_{2} h_{3}}\left(\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{2}}-\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{3}}\right)+\frac{\vec{e}_{2}}{h_{1} h_{3}}\left(\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{3}}-\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{1}}\right)+\frac{\vec{e}_{3}}{h_{1} h_{2}}\left(\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{1}}-\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{2}}\right)
\end{aligned}
$$

where $\vec{F}=\vec{e}_{1} F_{1}+\vec{e}_{2} F_{2}+\vec{e}_{3} F_{3} \quad$ and

$$
\begin{aligned}
& \left(u_{1}, u_{2}, u_{3}\right) \text { represents }(x, y, z) \quad \text { for rectangular coordinate system } \\
& \text { represents }(\rho, \phi, z) \quad \text { for cylindrical coordinate system } \\
& \text { represents }(r, \theta, \phi) \quad \text { for spherical coordinate system } \\
& \left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right) \text { represents } \quad\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right) \quad \text { for rectangular coordinate system } \\
& \text { represents } \quad\left(\vec{e}_{\rho}, \vec{e}_{\phi}, \vec{e}_{z}\right) \quad \text { for cylindrical coordinate system } \\
& \text { represents } \quad\left(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\phi}\right) \quad \text { for spherical coordinate system } \\
& \left(h_{1}, h_{2}, h_{3}\right) \text { represents }(1,1,1) \\
& \text { represents } \quad(1, \rho, 1) \\
& \text { represents } \quad(1, r, r \sin (\theta)) \\
& \text { for rectangular coordinate system } \\
& \text { for cylindrical coordinate system } \\
& \text { for spherical coordinate system } \\
& \int(t \sin (k t)) d t=-\frac{t \cos (k t)}{k}+\frac{\sin (k t)}{k^{2}} \\
& \int(t \cos (k t)) d t=\frac{t \sin (k t)}{k}+\frac{\cos (k t)}{k^{2}} \\
& f(t)=f(t+2 L)=f(t+4 L)=\cdots=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi t}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi t}{L}\right) \quad \text { where } \\
& a_{0}=\frac{1}{2 L} \int_{0}^{2 L} f(t) d t, a_{n}=\frac{1}{L} \int_{0}^{2 L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t \& b_{0}=\frac{1}{L} \int_{0}^{2 L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t \text { for } n=1,2,3
\end{aligned}
$$

