FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2013/2014

TITLE OF PAPER : CLASSICAL MECHANICS

COURSE NUMBER : P320

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS TWELVE PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question one

(a) Given the following definite integral of $J(\alpha)=\int_{x_{1}}^{x_{2}} f\left(y(\alpha, x), y^{\prime}(\alpha, x), y^{\prime \prime}(\alpha, x), y^{\prime \prime \prime}(\alpha, x) ; x\right) d x$, where the varied integration path is $y(\alpha, x)=y(x)+\alpha \eta(x) \quad, \quad \eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$,
$\left.\frac{d \eta(x)}{d x}\right|_{x=x_{1}}=\left.\frac{d \eta(x)}{d x}\right|_{x=x_{2}}=\left.0 \& \frac{d^{2} \eta(x)}{d x^{2}}\right|_{x=x_{1}}=\left.\frac{d^{2} \eta(x)}{d x^{2}}\right|_{x=x_{2}}=0 \quad$ as shown in the following diagram :

Using the extremum condition for $J(\alpha)$, i.e., $\left.\frac{\partial J(\alpha)}{\partial \alpha}\right|_{\alpha=0}=0$, to deduce that
f along the extremum path,i.e., $f\left(y(x), y^{\prime}(x), y^{\prime \prime}(x), y^{\prime \prime \prime}(x) ; x\right)$, satisfies the following equation:
$\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial f}{\partial y^{\prime \prime}}\right)-\frac{d^{3}}{d x^{3}}\left(\frac{\partial f}{\partial y^{\prime \prime \prime}}\right)=0$
(12 marks)
(b) A simple pendulum of length b and mass m moves on a mass-less rim of radius a rotating with constant angular velocity ω as shown in the figure below:

Write down the Lagrangian of the system in terms of θ and then deduce the following equation of motion
$\ddot{\theta}-\frac{a}{b} \omega^{2} \cos (\theta-\omega t)+\frac{g}{b} \sin (\theta)=0$
(13 marks)

Question two

A spherical pendulum of mass m and length b is shown in the figure below:

(a) (i) From $x=b \sin (\theta) \cos (\phi), y=b \sin (\theta) \sin (\phi) \& z=-b \cos (\theta)$ and $T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) \& V=m g z$, deduce the following Lagrangian for the system in terms of $\theta \& \phi$ as
$L=\frac{1}{2} m b^{2}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2}(\theta)\right)+m g b \cos (\theta)$
(ii) Write down the equations of motion for $\theta \& \phi$ and deduce that

$$
\left\{\begin{array}{l}
\frac{d p_{\theta}}{d t}=m b^{2} \sin (\theta) \cos (\theta) \dot{\phi}^{2}-m g b \sin (\theta) \\
\frac{d p_{\phi}}{d t}=0 \tag{3}
\end{array}\right.
$$

where $\quad p_{\theta}=m b^{2} \dot{\theta} \quad \& \quad p_{\phi}=m b^{2} \sin ^{2}(\theta) \dot{\phi}$
(iii) From eq.(3), one has $p_{\phi}=$ const. $\xrightarrow{\text { set as }} K$, deduce from eq.(2) the following equation for small θ, i.e., $\left(\sin (\theta) \approx \theta\right.$ and $\cos (\theta) \approx 1-\frac{\theta^{2}}{2}$ or 1$)$, that $m^{2} b^{4} \theta^{3} \ddot{\theta}=K^{2}-m^{2} g b^{3} \theta^{4}$
(iv) If $K=0$ in eq.(4), write down the general solution of $\theta(t)$. (3 marks)
(b) (i) Find the Hamiltonian of the system in terms of $\theta, \phi, p_{\theta} \& p_{\phi}$.
(4 marks)
(ii) Write down the equations of motion for H in (b)(i).
(4 marks)

Question three

(a) Given the Lagrangian for the two-body central force system as :

$$
L=T-V=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{k}{r}
$$

where μ is the reduced mass of the system, k is a positive constant and (r, θ) are polar coordinates of the motion plane with its origin at the center of mass of the two-body system. The integral form of orbital equation can be written as

$$
\begin{equation*}
\theta=\int \frac{\left(\frac{l}{r^{2}}\right)}{\sqrt{2 \mu\left(E-\frac{l^{2}}{2 \mu r^{2}}+\frac{k}{r}\right)}} d r+\text { const } \tag{1}
\end{equation*}
$$

where $l=\mu r^{2} \dot{\theta}$ (i.e., angular momentum) and $E=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{k}{r}$
(i.e., total energy) are two constants of the system.

Choose the integration constant in eq.(1) as zero (i.e., this is the same as choosing
the initial value of r as $r_{\min }$ at $\theta=0$), and set $u \equiv \frac{1}{r}$,
(i) show that eq.(1) can be simplified as

$$
\begin{equation*}
\theta=-\int \frac{1}{\sqrt{\left(\frac{2 \mu E}{l^{2}}-u^{2}+\frac{2 \mu k}{l^{2}} u\right)}} d u \tag{2}
\end{equation*}
$$

(2 marks)
(ii) combine $\left(u^{2}-\frac{2 \mu k}{l^{2}} u\right)$ in eq.(2) into the first two terms of a perfect square of u^{\prime} and show that eq.(2) can be further simplied to
$\theta=-\int \frac{1}{\sqrt{\left(a^{2}-\left(u^{\prime}\right)^{2}\right)}} d u^{\prime}$
where $\quad a=\sqrt{\frac{\mu^{2} k^{2}}{l^{4}}+\frac{2 \mu E}{l^{2}}} \quad \& \quad u^{\prime} \equiv u-\frac{\mu k}{l^{2}}$
(2 marks)
(iii) set $u^{\prime}=a \cos (\beta)$ and carry out the integral of $\int \frac{1}{\sqrt{\left(a^{2}-\left(u^{\prime}\right)^{2}\right)}} d u^{\prime}$ and show that eq.(3) becomes $\quad \theta=\beta \quad \cdots \cdots$ (4)
(2 marks)
(iv) Taking cosine of eq.(4) and using $u^{\prime}=a \cos (\dot{\beta}), u^{\prime} \equiv u-\frac{\mu k}{l^{2}} \& u=\frac{1}{r}$, deduce the following orbital equation

$$
\frac{\alpha}{r} \equiv 1+\varepsilon \cos (\theta) \quad \text { where } \quad \alpha \equiv \frac{l^{2}}{\mu k} \quad \& \quad \varepsilon \equiv \sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}}
$$

(6 marks)

Question three (continued)

(b) If an earth satellite of 500 kg mass is having a pure tangential speed $v_{\theta}(=r \dot{\theta})=9,000 \frac{\mathrm{~m}}{\mathrm{~s}}$ at its near-earth-point 800 km above the earth surface,
(i) calculate the values of l and E of this satellite, (4 marks)
(ii) calculate the values of the eccentricity ε and show that the orbit is an elliptical orbit. Also calculate its period.
($2+4$ marks)
(iii) what should be the minimum value of the v_{θ} at the same given near-earth-point such that the satellite would have a open orbit?
(3 marks)

Consider the motion of the bobs in the double pendulum system in the figure below.

Both pendulums are identical and having the length b and bob mass m. The motion of both bobs is restricted to lie in the plane of this paper, i.e., $x-y$ plane.
(a) (i) For small θ_{1} and θ_{2}, i.e., $\left(\sin (\theta) \approx \theta\right.$ and $\cos (\theta) \approx 1-\frac{\theta^{2}}{2}$ or 1$)$, show that the Lagrangian for the system can be expressed as:
$L=m b^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m b^{2} \dot{\theta}_{2}^{2}+m b^{2} \dot{\theta}_{1} \dot{\theta}_{2}-m g b\left(1+\theta_{1}^{2}+\frac{\theta_{2}^{2}}{2}\right)$
where the zero gravitational potential is set at the equilibrium position of the lower
bob, i.e., $\quad \theta_{1}=0, \theta_{2}=0$ and $y=0$.
(5 marks)
(ii) Write down the equations of motion and deduce that
$\left\{\begin{array}{l}2 \ddot{\theta}_{1}+\ddot{\theta}_{2}=-2 \frac{g}{b} \theta_{1} \\ \ddot{\theta}_{1}+\ddot{\theta}_{2}=-\frac{g}{b} \theta_{2}\end{array}\right.$
(5 marks)
(iii) Deduce from eq.(2) \& eq.(3) the following :
$\left\{\begin{array}{l}\ddot{\theta}_{1}=-2 \frac{g}{b} \theta_{1}+\frac{g}{b} \theta_{2} \\ \ddot{\theta}_{2}=2 \frac{g}{b} \theta_{1}-2 \frac{g}{b} \theta_{2} \\ \cdots \cdots\end{array}\right.$
(3 marks)

Question four (continued)

(b) (i) Set $\theta_{1}=\hat{X}_{1} e^{i \omega t}$ and $\theta_{2}=\hat{X}_{2} e^{i \omega t}$ (where \hat{X}_{1} and \hat{X}_{2} are constants) and deduce from eq.(4) \& eq.(5) the matrix equation $-\omega^{2} X=A X \quad$ where $X=\binom{\hat{X}_{1}}{\hat{X}_{2}}$ and $A=\left(\begin{array}{cc}-\left(2 \frac{g}{b}\right) & \frac{g}{b} \\ 2 \frac{g}{b} & -\left(2 \frac{g}{b}\right)\end{array}\right)$
(ii) Find the eigenfrequencies ω of this coupled system and show that they are $\omega_{1}=\sqrt{(2-\sqrt{2}) \frac{g}{b}} \quad \& \quad \omega_{2}=\sqrt{(2+\sqrt{2}) \frac{g}{b}}$
(iii) Find the eigenvector corresponding to ω_{1} in (b)(ii).
(a) The fixed (or inertia) coordinate system \mathbf{X}^{\prime} shares the same origin with the body coordinate system \mathbf{X} such that only rotational motion is considered. The rotational velocity $\vec{\omega}$ of the body system with respect to the fixed system are breaking down into three independent angular velocities, i.e., $\vec{\omega}=\overrightarrow{\dot{\varphi}}+\overrightarrow{\dot{\theta}}+\overrightarrow{\dot{\psi}}$ where (φ, θ, ψ) are Eulerian angles. We use two intermediate coordinate systems \mathbf{X} " \& \mathbf{X} "' to bridge between \mathbf{X} ' \& X systems such that $\quad X^{\prime \prime}=\lambda_{\varphi} X^{\prime}, \quad X^{\prime \prime \prime}=\lambda_{\theta} X^{\prime \prime} \quad \& \quad X=\lambda_{\psi} X^{\prime \prime \prime}$ where $\lambda_{\varphi}=\left(\begin{array}{ccc}\cos (\varphi) & \sin (\varphi) & 0 \\ -\sin (\varphi) & \cos (\varphi) & 0 \\ 0 & 0 & 1\end{array}\right), \lambda_{\theta}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & \sin (\theta) \\ 0 & -\sin (\theta) & \cos (\theta)\end{array}\right), \lambda_{\psi}=\left(\begin{array}{ccc}\cos (\psi) & \sin (\psi) & 0 \\ -\sin (\psi) & \cos (\psi) & 0 \\ 0 & 0 & 1\end{array}\right)$ as shown in the figure below.

(i) Since the direction of $\overrightarrow{\dot{\varphi}}$ is along $\mathrm{x}_{3}{ }^{\prime}$-axis (which is the same as x_{3} "-axis) with the magnitude of $\dot{\varphi}$ thus $(\overrightarrow{\dot{\varphi}})^{\prime}=\left(\begin{array}{c}0 \\ 0 \\ \dot{\varphi}\end{array}\right)$ in $X^{\prime \prime}$ system, show that $\overrightarrow{\dot{\varphi}}$ in \mathbf{X} system(i.e., the body system) is $(\overrightarrow{\dot{\varphi}})=\left(\begin{array}{c}\dot{\varphi} \sin (\theta) \sin (\psi) \\ \dot{\varphi} \sin (\theta) \cos (\psi) \\ \dot{\varphi} \cos (\theta)\end{array}\right)$ in X system. In other words, show that

$$
\left(\begin{array}{c}
\dot{\varphi} \sin (\theta) \sin (\psi) \\
\dot{\varphi} \sin (\theta) \cos (\psi) \\
\dot{\varphi} \cos (\theta)
\end{array}\right)=\lambda_{\psi} \quad \lambda_{\theta}\left(\begin{array}{c}
0 \\
0 \\
\dot{\varphi}
\end{array}\right)
$$

(ii) Since the direction of $\overrightarrow{\dot{\theta}}$ is along x_{1} "-axis (which is the same as x_{1} '" -axis) with the magnitude of $\dot{\theta}$ thus $(\overrightarrow{\dot{\theta}})=\left(\begin{array}{l}\dot{\theta} \\ 0 \\ 0\end{array}\right)$ in $X^{\prime \prime \prime}$ system, show that $\overrightarrow{\dot{\theta}}$ in X system(i.e., the body system) is $(\overrightarrow{\dot{\theta}})=\left(\begin{array}{c}\dot{\theta} \cos (\psi) \\ -\dot{\theta} \sin (\psi) \\ 0\end{array}\right)$. In other words, show that $\left(\begin{array}{c}\dot{\theta} \cos (\psi) \\ -\dot{\theta} \sin (\psi) \\ 0\end{array}\right)=\lambda_{\psi}\left(\begin{array}{l}\dot{\theta} \\ 0 \\ 0\end{array}\right)$
(iii) Since any rotational velocity of a rigid body can be expressed as $\vec{\omega}=\overrightarrow{\dot{\varphi}}+\overrightarrow{\dot{\theta}}+\vec{\psi}$ deduce that $\vec{\omega}$ in X system(i.e., body system) in terms of Eulerian angles is $(\vec{\omega}) \equiv\left(\begin{array}{c}\omega_{1} \\ \omega_{2} \\ \omega_{3}\end{array}\right)=\left(\begin{array}{c}\dot{\varphi} \sin (\theta) \sin (\psi)+\dot{\theta} \cos (\psi) \\ \dot{\varphi} \sin (\theta) \cos (\psi)-\dot{\theta} \sin (\psi) \\ \dot{\varphi} \cos (\theta)+\dot{\psi}\end{array}\right)$ in X system
(b) (i) By proper choice of the orientation of the body coordinate system, the inertia tensor I (i.e., rotational mass) of a rigid body can be in the form of a diagonalized
matrix , i.e., $I=\left(\begin{array}{ccc}I_{1} & 0 & 0 \\ 0 & I_{2} & 0 \\ 0 & 0 & I_{3}\end{array}\right)$, thus its rotational kinetic is
$T_{\text {rot }}=\frac{1}{2} I_{1} \omega_{1}{ }^{2}+\frac{1}{2} I_{2} \omega_{2}{ }^{2}+\frac{1}{2} I_{3} \omega_{3}{ }^{2}$.
Consider a torque free pure rotational motion of the rigid body, then its Lagrangian is
$L=T_{\text {rot }}=\frac{1}{2} I_{1} \omega_{1}{ }^{2}+\frac{1}{2} I_{2} \omega_{2}{ }^{2}+\frac{1}{2} I_{3} \omega_{3}{ }^{2} \rightarrow L(\varphi, \theta, \psi, \dot{\varphi}, \dot{\theta}, \dot{\psi})$.
Write down the Lagrange equation of motion for ψ and deduce that $\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}-I_{3} \dot{\omega}_{3}=0 \quad \ldots \ldots$ (1) .
(ii) Based on what argument one can write down the other two equations of motion directly from eq.(1) in (b)(i) as
$\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}-I_{1} \dot{\omega}_{1}=0 \quad \& \quad\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}-I_{2} \dot{\omega}_{2}=0$ without going through the similar process of finding the equations of motion for the other two Eulerian angles?
(2 marks)

Useful informations

$V=-\int \vec{F} \bullet d \vec{l}$ and reversely $\vec{F}=-\vec{\nabla} V$
$L=T-V=L\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}$
$H=\sum_{\alpha=1}^{n}\left(p_{\alpha} \dot{q}_{\alpha}\right)-L=H\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, t\right)$
$\dot{q}_{a}=\frac{\partial H}{\partial p_{\alpha}} \quad$ and $\quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}$
$[u, v] \equiv \sum_{\alpha=1}^{n}\left(\frac{\partial u}{\partial q_{\alpha}} \frac{\partial v}{\partial p_{\alpha}}-\frac{\partial u}{\partial p_{\alpha}} \frac{\partial v}{\partial q_{\alpha}}\right)$
$G=6.673 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
radius of earth $r_{E}=6.4 \times 10^{6} \mathrm{~m}$
mass of earth $m_{E}=6 \times 10^{24} \mathrm{~kg}$
earth attractive potential $\equiv-\frac{k}{r} \quad$ where $\quad k=G m m_{E}$
$\varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k}} \quad\{(\varepsilon=0$, circle $),(0<\varepsilon<1$, ellipse $),(\varepsilon=1$, parabola $), \cdots\}$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \approx m_{1} \quad$ if $\quad m_{2} \gg m_{1}$
For elliptical orbit, i.e., $0<\varepsilon<1$, then $\left\{\begin{array}{c}\text { semi-major } a=\frac{k}{2|E|} \\ \text { semi-minor } b=\frac{l}{\sqrt{2 \mu|E|}} \\ \text { period } \tau=\frac{2 \mu}{l}(\pi a b) \\ r_{\min }=a(1-\varepsilon) \& r_{\max }=a(1+\varepsilon)\end{array}\right.$
for plane polar (r, θ) system with unit vectors $\left(\vec{e}_{r}, \vec{e}_{\theta}\right)$, we have
$\left\{\begin{array}{l}\vec{v}=\vec{e}_{r} \dot{r}+\vec{e}_{\theta} r \dot{\theta} \\ \vec{a}=\vec{e}_{r}\left(\ddot{r}-r \dot{\theta}^{2}\right)+\vec{e}_{\theta}(2 \dot{r} \dot{\theta}+r \ddot{\theta})\end{array}\right.$
$\vec{\nabla} f=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}$

$$
\begin{aligned}
& I=\left(\begin{array}{lll}
\sum_{\alpha} m_{\alpha}\left(x_{\alpha, 2}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 2} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 1} x_{\alpha, 3} \\
-\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 1} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 3}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha, 2} x_{\alpha, 3} \\
-\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 1} & -\sum_{\alpha} m_{\alpha} x_{\alpha, 3} x_{\alpha, 2} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{2}+x_{\alpha, 2}^{2}\right.
\end{array}\right) \\
& \vec{F}_{e f f}=\vec{F}-m \ddot{\vec{R}}_{f}-m \dot{\vec{\omega}} \times \vec{r}-m \vec{\omega} \times(\vec{\omega} \times \vec{r})-2 m \vec{\omega} \times \vec{v}_{r} \quad \text { where } \\
& \vec{r}^{\prime}=\vec{R}+\vec{r} \text { and } \\
& \left.\vec{r}^{\prime} \text { refers to fixed(inertial system }\right) \\
& \vec{r} \text { refers to rotatinal(non-inertial system) rotates with } \vec{\omega} \text { to } \vec{r}^{\prime} \text { system } \\
& \vec{R} \quad \text { from the origin of } \vec{r}^{\prime} \text { to the origin of } \vec{r} \\
& \vec{v}_{r}=\left(\frac{d \vec{r}}{d t}\right)_{r}
\end{aligned}
$$

