FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2013/2014

TITLE OF PAPER : ELECTROMAGNETIC THEORY

COURSE NUMBER : P331

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS NINE PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

A uniform surface charge density of $\left(\frac{k}{a}\right) C / m^{2}$ where k is a positive constant is deposited on $\rho=a$ surface of a very long straight coaxial cable, with an inner solid wire of radius $a \mathrm{~m}$. A uniform surface charge density of $\left(-\frac{k}{c}\right) C / m^{2}$ is deposited on $\rho=c$ surface of the outer hollow wire with inner radius of $c \quad m$ and outer radius of $d m$. In-between the wires is filled with two layers of insulating materials with permittivity $\varepsilon_{1} \& \varepsilon_{2}$ for $(a<\rho<b) \&(b<\rho<c)$ layers respectively as shown in the figure below.

(a) Find the total electric charges per unit length deposited on each of the inner and outer conducting wires in terms of k and name them as $q_{1} \& q_{2}$ respectively.
Show that $\quad q_{1}=-q_{2}$.
(3 marks)
(b) Set $\vec{D}(\rho, \phi, z)=\vec{e}_{\rho} D_{\rho}(\rho)$ (write a brief justification for this setting), draw an appropriate closed surface and utilize the integral form of electric Gauss law, i.e., $\oiint_{f} \vec{D} \bullet d \vec{s}=\{$ total Q enclosed by $S\}$, to find $D_{\rho}(\rho)$ for $a<\rho<c$ region. Then write down the form of electric field \vec{E} for $a<\rho<c$ region. (2+2+6 marks)
(c) Find the potential difference between the inner and outer wires and then write down the distributive capacitance of the given coaxial cable system.
(d) Explain briefly the bounded charge excess on the surface of a dielectric material and then find the surface charge density of the bounded charge exces $\sigma_{s p}$ on the
$\rho=a \& \rho=c$ dielectric material surfaces in terms of $k, \varepsilon_{1} \& \varepsilon_{2} .(1+4$ marks $)$
(Hint : $\sigma_{s p}=\bar{e}_{n} \bullet \vec{P}$ where \vec{e}_{n} is the normal outward unit vector on dielectric surface)

Question two

(a) A thin conducting wire of length $2 L$, with its central axis coinciding with the z axis and its centre point coinciding with the origin, carries a steady total current I along positive z direction as shown in the figure below.

(i) Since the given current source is only along z axis, its produced vector potential at a field point $P(\rho, \phi, 0)$ is also having only z component A_{z}, i.e., $\vec{A}=\vec{e}_{z} A_{z} \quad$ where $\quad A_{z}=\int_{z^{\prime}=-L}^{z^{\prime}=+L} \frac{\mu_{0} I d z^{\prime}}{4 \pi R}=2 \int_{z^{\prime}=0}^{z^{\prime}=+L} \frac{\mu_{0} I d z^{\prime}}{4 \pi \sqrt{\left(z^{\prime}\right)^{2}+\rho^{2}}}$, carry out the above integral for A_{z} about z^{\prime} and show that $A_{z}=\frac{\mu_{0} I}{2 \pi} \ln \left(\frac{L+\sqrt{L^{2}+\rho^{2}}}{\rho}\right)$
(Hint : set $\left.\quad z^{\prime}=\rho \tan (\alpha) \quad, \quad \int \sec (\alpha) d \alpha=\ln (\sec (\alpha)+\tan (\alpha))\right)$
(ii) For $L \gg \rho$, i.e., $\sqrt{L^{2}+\rho^{2}} \rightarrow L$, use $\vec{A} \approx \bar{e}_{z} \cdot \frac{\mu_{0} I}{2 \pi} \ln \left(\frac{2 L}{\dot{\rho}}\right)$ and $\vec{B}=\vec{\nabla} \times \vec{A}$ to find the magnetic field \vec{B} at the field point and show that $\vec{B}=\vec{e}_{\phi} \frac{\mu_{0} I}{2 \pi \rho}$.

Question two (continued)

(b) Placing a rectangular conducting loop of dimension $b \times c$ a distance of d away from the central current carrying wire as shown in the diagram below, i.e., the inner region confined by the rectangular loop in clockwise sense is
$S: d \leq \rho \leq d+b \quad, \quad 0 \leq z \leq c \quad \& \quad d \vec{s}=\vec{a}_{\phi} d \rho d z$,

(i) find the total magnetic flux Φ_{m} passing through the inner region confined by the rectangular loop, i.e., $\Phi_{m}=\int_{s} \vec{B} \bullet d \vec{s}$, in terms of $\mu_{0}, b, c, d \& I$. Also write down the mutual inductance M between the given rectangular loop and the long straight wire and show that $M=\frac{\mu_{0}}{2 \pi} \times \ln \left(\frac{d+b}{d}\right) \times c$.
(ii) If given the values of $b=5 \mathrm{~cm}, c=8 \mathrm{~cm} \& d=10 \mathrm{~cm}$ find the value of M. Further if the wire carries a sinusoidal current $I(t)=2 \sin (9 t) \quad A$ instead of carrying a static current I, find the induced e.m.f. in the rectangular conducting loop.
($3+2$ marks)

Question three

(a) An interface separating two dielectric regions of permittivity $\varepsilon_{1} \& \varepsilon_{2}$ is shown in the figure below. $\vec{E}_{1} \& \vec{E}_{2}$ are the electric fields at the same point on the interface in the different regions and $\theta_{1} \& \theta_{2}$ are their respective angles made with the normal.

(i) Use the integral Faraday's law and by choosing proper closed loop across the interface, deduce that the tangential component of \bar{E} is continuous at the interface, i.e., $\quad E_{1 t}=E_{2 t}$
(ii) Use the integral electric Gauss law and by choosing proper closed surface across the interface, deduce that the normal component of \vec{D} is continuous at the interface, i.e., $D_{1 n}=D_{2 n}$.
(iii) Use the results in (a)(i) and (a)(ii) and deduce the following refraction law for \vec{E} $\varepsilon_{1} \tan \left(\theta_{2}\right)=\varepsilon_{2} \tan \left(\theta_{1}\right)$.
(4 marks)
(b) The equation of motion of an average conduction electron based on Drude's model is $m_{e} \frac{d \vec{v}_{d}}{d t}=-e \vec{E}-\frac{2 m_{e} \vec{v}_{d}}{\tau_{c}}$,
(i) Explain briefly each term in the above equation.
(2 marks)
(ii) In the steady state situation, i.e., $\frac{d \vec{v}_{d}}{d t}=0$, deduce the following point form of Ohm's law $\vec{J}=\sigma \vec{E}$ where $\sigma=\frac{n e^{2}}{2 m_{e}} \tau_{c}$; (Hint : $\left.\vec{J}=\rho_{v} \vec{v}_{d}=-n e \vec{v}_{d}\right)$ (5 marks)
(iii) If a certain pure metal has an atomic density of $3<10^{28} \frac{\text { atoms }}{m^{3}}$ at room temperature and three outer orbit electrons are conduction electrons, find the value of τ_{c} if its measured dc conductivity is $\sigma=2 \times 10^{7} \frac{1}{\mathrm{~m} \Omega} . \quad$ (4 marks)

Question four

(a) The Maxwell's equations for the material region of parameters $\mu, \varepsilon \& \sigma$ are $\vec{\nabla} \cdot \vec{E}=0$
$\vec{\nabla} \cdot \vec{H}=0$
$\vec{\nabla} \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t}$
$\vec{\nabla} \times \vec{H}=\sigma \vec{E}+\varepsilon \frac{\partial \bar{E}}{\partial t}$
(i) Deduce from them the following wave equation for \vec{H}

$$
\nabla^{2} \vec{H}-\mu \sigma \frac{\partial \vec{H}}{\partial t}-\mu \varepsilon \frac{\partial^{2} \vec{H}}{\partial t^{2}}=0
$$

(3 marks)
(ii) Set \vec{H} as $\left(\overrightarrow{\hat{H}}(\right.$ space $\left.) e^{i \omega t}\right)$ and substitute it into the above wave equation, to deduce the following time-harmonic equation for $\overrightarrow{\hat{H}}$ (space) as $\nabla^{2} \overrightarrow{\hat{H}}($ space $)-\hat{\gamma}^{2} \overrightarrow{\hat{H}}($ space $)=0 \quad$ where $\quad \hat{\gamma}=\sqrt{i \omega \mu \sigma-\omega^{2} \mu \varepsilon}$
(3 marks)
(iii) Set the propagation constant $\hat{\gamma} \equiv \alpha+i \beta$, to deduce that

$$
\begin{aligned}
& \beta=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1} \\
& \left(\text { Hint }: \sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos (\theta)}{2}} \& \cos (\theta)=\left(\sqrt{1+\tan ^{2}(\theta)}\right)^{-1}\right)
\end{aligned}
$$

(6 marks)
(b) An uniform plane wave traveling along the +z direction with the field components $E_{x}(z) \& H_{y}(z)$ has a complex electric field amplitude $\hat{E}_{m}=100 e^{i 20^{\circ}} \frac{V}{m}$ and propagates at a frequency $f=10^{6} \mathrm{~Hz}$ in a material region having the parameters $\mu=\mu_{0}, \varepsilon=2 \varepsilon_{0} \& \frac{\sigma}{\omega \varepsilon}=0.4$.
(i) Find the values of the propagation constant $\hat{\gamma}(=\alpha+i \beta)$ and the intrinsic wave impedance $\hat{\eta}$ for this wave,
(4 marks)
(ii) Express the electric and magnetic fields in both their complex and real-time forms, with the numerical values of (b)(i) inserted,
(6 marks)
(iii) Find the values of the penetration depth, wavelength gnd phase velocity of the given wave.
(3 marks)

Question five

\#n uniform plane wave $\left(\hat{E}_{x 1}^{+}, \hat{H}_{y 1}^{+}\right)$, operating at a frequency f, is normally incident upon a layer of d_{2} thickness, and emerges to region 3 as shown below:

$O_{1}, O_{2} \& O_{3}$ are the respective origins for region $1,2 \& 3$ chosen at the first and second interface.
(a) Define for the $i^{\text {th }}$ region $(i=1,2,3)$ the reflection coefficient $\hat{\Gamma}_{i}(z)$ and the total wave impedance $\hat{Z}_{j}(z)$ and deduce the following:

$$
\begin{equation*}
\hat{\Gamma}_{i}(z)=\frac{\hat{Z}_{i}(z)-\hat{\eta}_{i}}{\hat{Z}_{i}(z)-\hat{\eta}_{i}} \tag{6marks}
\end{equation*}
$$

(b) If $f=10^{8} \mathrm{~Hz}$ \& $d_{2}=\frac{\lambda_{2}}{4}$, region $1 \& 3$ are air regions and region 2 is a lossless region with parameters $\mu_{2}=\mu_{0}, \varepsilon_{1}=4 \varepsilon_{0} \& \frac{\sigma}{\omega \varepsilon}=0$
(i) find the values of $\beta_{1}, \beta_{2}, \beta_{3}, \lambda_{2} \& \hat{\eta}_{2}$. (note: $\hat{\eta}_{1}=\hat{\eta}_{3}=120 \pi \Omega$ and $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$)
(ii) Starting with $\hat{\Gamma}_{3}(z)=0$ for the rightmost region, i.e., region 3 , and using continuous \hat{Z} at the interface as well as the equations in (a), find the values of $\hat{Z}_{3}(0), \hat{Z}_{2}(0), \hat{\Gamma}_{2}(0), \hat{\Gamma}_{2}\left(-d_{2}\right), \hat{Z}_{2}\left(-d_{2}\right), \hat{Z}_{1}(0) \& \hat{\Gamma}_{1}(0)$ ($\mathbf{1 0}$ marks)
(iii) Find the value of $\hat{E}_{m 1}^{-} \& \hat{E}_{m 2}^{+}$if given $\hat{E}_{m 1}^{+}=100 e^{i 30^{\circ}} \frac{V}{m}$ (5 marks)
$e=1.6 \times 10^{-19} \mathrm{C}$
$m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$
$\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{H}}{\mathrm{m}}$
$\varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}}$
$\alpha=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1}$
$\beta=\frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1}$
$\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$\hat{\eta}=\frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt[4]{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}} e^{i \frac{1}{2} \tan ^{-1}\left(\frac{\sigma}{\omega \varepsilon}\right)}$
$\eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=120 \pi \quad \Omega=377 \quad \Omega$
$\beta_{0}=\omega \sqrt{\mu_{0} \varepsilon_{0}}$
$\oiint_{S} \vec{E} \cdot d \vec{s}=\frac{1}{\varepsilon} \iiint_{V} \rho_{v} d v$
$\oiiint_{S} \vec{B} \cdot d \vec{s} \equiv 0$
$\oint_{L} \vec{E} \cdot d \vec{l}=-\frac{\partial}{\partial t}\left(\iint_{S} \vec{B} \bullet d \vec{s}\right)$
$\oint_{L} \vec{B} \bullet d \vec{l}=\mu \iint_{S} \vec{J} \bullet d \vec{s}+\mu \varepsilon \frac{\partial}{\partial t}\left(\iint_{S} \vec{E} \bullet d \vec{s}\right)$
$\vec{\nabla} \cdot \vec{E}=\frac{\rho_{v}}{\varepsilon}$
$\vec{\nabla} \cdot \vec{B}=0$
$\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\vec{\nabla} \times \vec{B}=\mu \vec{J}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t}$
$\vec{J}=\sigma \vec{E}$
$\vec{D}=\varepsilon \vec{E}=\varepsilon_{0} \vec{E}+\vec{P} \quad \& \quad \vec{B}=\mu \vec{H}=\mu_{0} \vec{H}+\vec{M}$
$\oiint_{S} \vec{F} \bullet d \vec{s} \equiv \oiiint_{v}(\vec{\nabla} \bullet \vec{F}) d v \quad$ divergence theorem \quad u3
$\oint_{L} \vec{F} \bullet d \vec{l} \equiv \iint_{S}(\vec{\nabla} \times \vec{F}) \bullet d \vec{s} \quad$ Stokes' theorem
$\vec{\nabla} \bullet(\vec{\nabla} \times \vec{F}) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} f) \equiv 0$
$\vec{\nabla} \times(\vec{\nabla} \times \vec{F}) \equiv \vec{\nabla}(\vec{\nabla} \bullet \vec{F})-\nabla^{2} \vec{F}$
$\vec{\nabla} f=\vec{e}_{x} \frac{\partial f}{\partial x}+\vec{e}_{y} \frac{\partial f}{\partial y}+\vec{e}_{z} \frac{\partial f}{\partial z}=\vec{e}_{\rho} \frac{\partial f}{\partial \rho}+\vec{e}_{\phi} \frac{1}{\rho} \frac{\partial f}{\partial \phi}+\vec{e}_{z} \frac{\partial f}{\partial z}$
$=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\vec{e}_{\phi} \frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi}$
$\vec{\nabla} \bullet \vec{F}=\frac{\partial\left(F_{x}\right)}{\partial x}+\frac{\partial\left(F_{y}\right)}{\partial y}+\frac{\partial\left(F_{z}\right)}{\partial z}=\frac{1}{\rho} \frac{\partial\left(F_{\rho} \rho\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}+\frac{\partial\left(F_{z}\right)}{\partial z}$
$=\frac{1}{r^{2}} \frac{\partial\left(F_{r} r^{2}\right)}{\partial r}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\theta} \sin (\theta)\right)}{\partial \theta}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}$
$\vec{\nabla} \times \vec{F}=\bar{e}_{x}\left(\frac{\partial\left(F_{z}\right)}{\partial y}-\frac{\partial\left(F_{y}\right)}{\partial z}\right)+\vec{e}_{y}\left(\frac{\partial\left(F_{x}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial x}\right)+\vec{e}_{z}\left(\frac{\partial\left(F_{y}\right)}{\partial x}-\frac{\partial\left(F_{x}\right)}{\partial y}\right)$
$=\frac{\vec{e}_{\rho}}{\rho}\left(\frac{\partial\left(F_{z}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} \rho\right)}{\partial z}\right)+\vec{e}_{\phi}\left(\frac{\partial\left(F_{\rho}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial \rho}\right)+\frac{\vec{e}_{z}}{\rho}\left(\frac{\partial\left(F_{\phi} \rho\right)}{\partial \rho}-\frac{\partial\left(F_{\rho}\right)}{\partial \phi}\right)$
$=\frac{\bar{e}_{r}}{r^{2} \sin (\theta)}\left(\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial \theta}-\frac{\partial\left(F_{\theta} r\right)}{\partial \phi}\right)+\frac{\bar{e}_{\theta}}{r \sin (\theta)}\left(\frac{\partial\left(F_{r}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial r}\right)+\frac{\bar{e}_{\phi}}{r}\left(\frac{\partial\left(F_{\theta} r\right)}{\partial r}-\frac{\partial\left(F_{r}\right)}{\partial \theta}\right)$
where $\vec{F}=\vec{e}_{x} F_{x}+\vec{e}_{y} F_{y}+\vec{e}_{z} F_{z}=\vec{e}_{\rho} F_{\rho}+\vec{e}_{\phi} F_{\phi}+\vec{e}_{z} F_{z}=\vec{e}_{r} F_{r}+\vec{e}_{\theta} F_{\theta}+\vec{e}_{\phi} F_{\phi} \quad$ and
$d \bar{l}=\bar{e}_{x} d x+\bar{e}_{y} d y+\bar{e}_{z} d z=\vec{e}_{\rho} d \rho+\vec{e}_{\phi} \rho d \phi+\bar{e}_{z} d z=\vec{e}_{r} d r+\bar{e}_{\theta} r d \theta+\bar{e}_{\phi} r \sin (\theta) d \phi$
$\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$

$$
=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}}
$$

$\hat{Z}_{i}(z)=\hat{\eta}_{i} \frac{1+\hat{\Gamma}_{i}(z)}{1-\hat{\Gamma}_{i}(z)} \quad, \quad \hat{\Gamma}_{i}(z)=\frac{\hat{Z}_{i}(z)-\hat{\eta}_{i}}{\hat{Z}_{i}(z)-\hat{\eta}_{i}} \quad \&$
$\hat{\Gamma}_{i}\left(z^{\prime}\right)=\hat{\Gamma}_{i}(z) e^{\left.2 \hat{y}_{\left(z^{\prime}\right.}-z\right)} \quad$ where $z^{\prime} \& z$ are two positions in $i^{\text {th }}$ region

$$
\vec{D}=\varepsilon \vec{E}=\varepsilon_{0} \vec{E}+\vec{P} \quad \& \quad \vec{B}=\mu \vec{H}=\mu_{0} \vec{H}+\vec{M}
$$

$$
\oiint_{s} \vec{F} \bullet d \bar{s} \equiv \oiint_{v}(\vec{\nabla} \bullet \vec{F}) d v \quad \text { divergence theorem }
$$

$$
\oint_{L} \vec{F} \bullet d \vec{l} \equiv \iint_{S}(\vec{\nabla} \times \vec{F}) \bullet d \vec{s} \quad \text { Stokes' theorem }
$$

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F}) \equiv 0
$$

$$
\vec{\nabla} \times(\vec{\nabla} f)=0
$$

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{F}) \equiv \vec{\nabla}(\vec{\nabla} \bullet \vec{F})-\nabla^{2} \vec{F}
$$

$$
\vec{\nabla} f=\vec{e}_{x} \frac{\partial f}{\partial x}+\vec{e}_{y} \frac{\partial f}{\partial y}+\vec{e}_{z} \frac{\partial f}{\partial z}=\vec{e}_{\rho} \frac{\partial f}{\partial \rho}+\vec{e}_{\phi} \frac{1}{\rho} \frac{\partial f}{\partial \phi}+\vec{e}_{z} \frac{\partial f}{\partial z}
$$

$$
=\vec{e}_{r} \frac{\partial f}{\partial r}+\vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\vec{e}_{\phi} \frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi}
$$

$$
\vec{\nabla} \bullet \vec{F}=\frac{\partial\left(F_{x}\right)}{\partial x}+\frac{\partial\left(F_{y}\right)}{\partial y}+\frac{\partial\left(F_{z}\right)}{\partial z}=\frac{1}{\rho} \frac{\partial\left(F_{\rho} \rho\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}+\frac{\partial\left(F_{z}\right)}{\partial z}
$$

$$
=\frac{1}{r^{2}} \frac{\partial\left(F_{r} r^{2}\right)}{\partial r}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\theta} \sin (\theta)\right)}{\partial \theta}+\frac{1}{r \sin (\theta)} \frac{\partial\left(F_{\phi}\right)}{\partial \phi}
$$

$$
\vec{\nabla} \times \vec{F}=\vec{e}_{x}\left(\frac{\partial\left(F_{z}\right)}{\partial y}-\frac{\partial\left(F_{y}\right)}{\partial z}\right)+\vec{e}_{y}\left(\frac{\partial\left(F_{x}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial x}\right)+\vec{e}_{z}\left(\frac{\partial\left(F_{y}\right)}{\partial x}-\frac{\partial\left(F_{x}\right)}{\partial y}\right)
$$

$$
=\frac{\bar{e}_{\rho}}{\rho}\left(\frac{\partial\left(F_{z}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} \rho\right)}{\partial z}\right)+\vec{e}_{\phi}\left(\frac{\partial\left(F_{\rho}\right)}{\partial z}-\frac{\partial\left(F_{z}\right)}{\partial \rho}\right)+\frac{\bar{e}_{z}}{\rho}\left(\frac{\partial\left(F_{\phi} \rho\right)}{\partial \rho}-\frac{\partial\left(F_{\rho}\right)}{\partial \phi}\right)
$$

$$
=\frac{\bar{e}_{r}}{r^{2} \sin (\theta)}\left(\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial \theta}-\frac{\partial\left(F_{\theta} r\right)}{\partial \phi}\right)+\frac{\bar{e}_{\theta}}{r \sin (\theta)}\left(\frac{\partial\left(F_{r}\right)}{\partial \phi}-\frac{\partial\left(F_{\phi} r \sin (\theta)\right)}{\partial r}\right)+\frac{\bar{e}_{\phi}}{r}\left(\frac{\partial\left(F_{\theta} r\right)}{\partial r}-\frac{\partial\left(F_{r}\right)}{\partial \theta}\right)
$$

$$
\text { where } \vec{F}=\vec{e}_{x} F_{x}+\vec{e}_{y} F_{y}+\vec{e}_{z} F_{z}=\vec{e}_{\rho} F_{\rho}+\vec{e}_{\phi} F_{\phi}+\vec{e}_{z} F_{z}=\vec{e}_{r} F_{r}+\vec{e}_{\theta} F_{\theta}+\vec{e}_{\phi} F_{\phi} \quad \text { and }
$$

$$
d \bar{l}=\bar{e}_{x} d x+\bar{e}_{y} d y+\bar{e}_{z} d z=\bar{e}_{\rho} d \rho+\vec{e}_{\phi} \rho d \phi+\vec{e}_{z} d z=\vec{e}_{r} d r+\vec{e}_{\theta} r d \theta+\vec{e}_{\phi} r \sin (\theta) d \phi
$$

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

$$
=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}}
$$

$$
\hat{Z}_{i}(z)=\hat{\eta}_{i} \frac{1+\hat{\Gamma}_{i}(z)}{1-\hat{\Gamma}_{i}(z)} \quad, \quad \hat{\Gamma}_{i}(z)=\frac{\hat{Z}_{i}(z)-\hat{\eta}_{i}}{\hat{Z}_{i}(z)-\hat{\eta}_{i}} \quad \&
$$

$$
\hat{\Gamma}_{i}\left(z^{\prime}\right)=\hat{\Gamma}_{i}(z) e^{2 \dot{z}_{i}\left(z^{\prime}-z\right)} \quad \text { where } z^{\prime} \& z \text { are two positions in } i^{\text {th }} \text { region }
$$

