UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS
SUPPLEMENTARY EXAMINATION: 2013/2014
TITLE OF THE PAPER: QUANTUM MECHANICS
COURSE NUMBER: P342
TIME ALLOWED: THREE HOURS
INSTRUCTIONS:

- ANSWER ANY FOUR OUT THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHTHAND MARGIN.
- USE THE INFORMATION GIVEN IN PAGE 2 WHEN NECESSARY.

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Useful Formulas

Time-dependent Schrodinger equation: $\quad i \hbar \frac{\partial}{\partial t} \psi(x, t)=\hat{H} \psi(x, t)$
Time-independent Schrodinger equation: $\quad \hat{H} \psi(x)=E \psi(x)$
Hamiltonian operator : $\quad \hat{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial}{\partial x}\right)^{2}+V(x)$
Momentum operator $\hat{p}=-i \hbar \frac{\partial}{\partial x}$
Probability current $\quad J(x, t)=\frac{i \hbar}{2 m}\left(\frac{\partial \psi^{*}}{\partial x} \psi-\psi^{*} \frac{\partial \psi}{\partial x}\right)$
Fourier transform $\psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) e^{i k x} d k$
Inverse Fourier transform $\quad \phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \psi(x) e^{-i k x} d x$
$\int_{-\infty}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{(2 a)^{n}} \sqrt{\frac{\pi}{a}}, \quad \mathrm{n}=0,1,2,3, \ldots$
$\int_{-\infty}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=0, \quad \mathrm{n}=0,1,2,3, \ldots$
Heisenberg uncertainty $\quad \Delta x \Delta p \geq \hbar / 2$
Uncertainty of a quantity $\quad(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
Infinite potential well: $\quad V(x)=\left\{\begin{array}{c}0 \text { for } 0 \leq x \leq a \\ \infty \\ \text { elsewhere }\end{array}, \quad E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m a^{2}}\right.$ and $u_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)$
(a) Consider a particle confined to the region $0 \leq x \leq L$ with the wavefunction

$$
\psi(x, t)=A \sin \left(\frac{2 \pi x}{L}\right) e^{-i E t}
$$

(i) Find a value for A that normalizes $\psi(x, t)$
(ii) Determine the eigenvalue energy E in terms of \hbar, L and m such that $\psi(x, t)$ satisfies the Schrodinger equation.
(iii) Sketch the probability density $P(x, t)$ for finding the particle at point x at time t. Label your axes. What is the probability density $P(L / 2, t)$ for the particle to be $x=L / 2$ at time t.
[4 marks]
(iv) Compute the expectation value for the position $\langle x\rangle$ and the momentum $\langle p\rangle$.
[6 marks]
(b) Consider a particle of mass m confined to a very thin wire of length L; you can treat this as a 1-dimensional problem. Use the uncertainty relation $\Delta p \Delta x \geq \hbar / 2$ to estimate the lowest energy that this particle can have, in terms of m, L, and \hbar.

Consider two orthonormal energy eigenstates $|1\rangle$ and $|2\rangle$, where $\hat{H}|1\rangle=E_{1}|1\rangle$. $\hat{H}|2\rangle=E_{2}|1\rangle$. \hat{H} being the Hamiltonian and $E_{1} \neq E_{2}$. Let $|A\rangle$ and $|B\rangle$ define two different linear combinations of the states $|1\rangle$ and $|2\rangle$:

$$
|A\rangle=\frac{|1\rangle+i|2\rangle}{\sqrt{2}}, \quad|B\rangle=\frac{|1\rangle-i|2\rangle}{\sqrt{2}}
$$

(a) Compute $\langle A \mid A\rangle,\langle B \mid B\rangle,\langle A \mid B\rangle$, and $\langle B \mid A\rangle$.
(b) If initially at time $t=0$ the particle is in the state $|\psi\rangle=|A\rangle$, what is the wavefunction $|\psi, t\rangle$ at later times?
(c) For the above initial condition $|\psi, 0\rangle=|A\rangle$, what are the probabilities that a measurement at time $t>0$ will find the particles in the state $|A\rangle$ or in state $|B\rangle$ respectively?
[5 marks]
(d) Suppose at $t=0$ a particle is in the state

$$
|\psi, 0\rangle=N(|1\rangle-i|2\rangle+2|3\rangle+|\sqrt{3}\rangle)
$$

where $|n\rangle$ are the orthonormal eigenstates of some Hamiltonian with $\hat{H}|n\rangle=$ $E_{n}|n\rangle$. The number N is chosen to normalize the state so the $\langle\psi, 0 \mid \psi, 0\rangle=1$. Which of the following statements is false?
(i) At later times $t,\langle\psi, t \mid \psi, t\rangle=1$.
(ii) The normalization constant can be taken to be $N=1 / 3$ (c) the expectation value of the Hamiltonian $\langle\psi, t| \hat{H}|\psi, t\rangle$, is time independent.
(iii) The probability of measuring the energy to be E_{3} is twice the probability of measuring the energy to be E_{1}.
(iv) A measurement of the particle's energy can only yield the values E_{1}, E_{2}, E_{3} or E_{4}.

(a) A particle in a central potential has an orbital angular momentum \vec{L} and a spin \vec{S}. The spin-orbit interaction gives rise to the Hamiltonian $H=A \vec{L} \cdot \vec{S}$ where A is a constant. Let $\vec{J}=\vec{L}+\vec{S}$. Write the Hamiltonian in terms of J^{2}, L^{2}, and S^{2}.
(b) If L_{x}, L_{y} and L_{z} are the three angular momentum operators in three dimensions. With z-axis as the rotational axis compute the following commutation relations:
(i) $\left[L_{x}, L_{y}\right]$
(ii) $\left[L_{z}, L_{y}\right]$
(iii) $\left[L^{2}, L_{y}\right]$
(iv) $\left[L^{2}, L_{z}\right]$
(v) $\left[L_{+}, L_{x}\right]$
(vi) $\left[L_{+}, L_{z}\right]$
(vii) $\left[L_{+}, L_{-}\right]$
where $L_{ \pm}=L_{x} \pm i L_{y}$.
(c) For the simple harmonic oscillator ladder operators \hat{a} and \hat{a}^{\dagger}, where $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$, compute both $\left[\hat{a} \hat{a}^{\dagger}, \hat{a}^{\dagger}\right]$ and $\left[\hat{a}^{\dagger} \hat{a}, \hat{a}^{\dagger}\right]$
(d) Which two quantities describing a particle's motion in a central potential in 3 -dimenions cannot be simultaneously mesured with arbitrary accuracy, even in principle:
(a) Total angular momentum and the x-component of the angular momentum.
(b) y position and the z-component of angular momentum.
(c) x position and the x-component of the angular momentum.
(d) Energy and total angular momentum.
(e) Energy and the x-component of angular momentum.

Question 4

The expectation value of any operator \hat{O} on a state $|\psi, t\rangle$ which is a solution to the time dependent Schrodinger equation satisfies:

$$
\frac{d}{d t}\langle\psi, t| \hat{O}|\psi, t\rangle=\frac{i}{\hbar}\langle\psi, t|[\hat{H}, \hat{O}]|\psi, t\rangle
$$

(a) Use the commutation relation between the operators x and p to obtain the equations describing the time dependence of $\langle x\rangle$ and $\langle p\rangle$ for the Hamiltonian given by

$$
\hat{H}=\frac{p^{2}}{2 m}+\frac{1}{2} m\left(\omega_{1}^{2} x^{2}+\omega_{2} x+C\right)
$$

[18 marks]
(b) Solve the equations of motion you obtained in (a). Write your solutions in terms of $\langle x\rangle$ and $\langle p\rangle$, the expectation values at time $t=0$.

Question 5

Consider a particle with mass m in a potential

$$
V(x)=\left\{\begin{array}{l}
\infty \text { for } x<0 ; x>a \\
0 \quad 0<x<a
\end{array}\right.
$$

with a initial normalized wave function of the form

$$
\psi(x, 0)=A \cos ^{4}\left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi x}{a}\right) .
$$

(a) What is the form $\psi(x, t)$?
(b) Calculate the normalization constant A.
(c) What is the probability that an energy measurement yields E_{3}, where $E_{n}=$ $n^{2} \pi^{2} \hbar^{2} /\left(2 m a^{2}\right) ?$

