```UNIVERSITY OF SWAZILAND173
```

FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF PHYSICS
SUPPLEMENTARY EXAMINATION 2013/14
TITLE OF PAPER: DIGITAL ELECTRONICS
COURSE NUMBER: P411
TIME ALLOWED: 3 HOURS

```
INSTRUCTIONS:
ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS.
MARKS FOR DIFFERENT SECTIONS ARE SHOWN ENCLOSED IN SQUARE BRACKETS.
```

THIS PAPER HAS 6 PAGES INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.
1 (a) Determine the hexadecimal equivalent of 82.25_{10}. 174
(b) Find the binary equivalent of 17E.F6 16 [3]
(c) Find the octal equivalent of $2 \mathrm{~F} . \mathrm{C4}_{16}$. [3]
(d) Subtract $(-14)_{10}$ from $(-24)_{10}$, using the 2^{\prime} s complement representation. [5]
(e) Subtract 29. A_{16} from $4 \mathrm{~F} . \mathrm{B}_{16}$, using the 2^{\prime} s complement arithmetic. [5]
(f) Subtract 77_{8} from 12_{8}, using the 8 's complement arithmetic. [5]
2 (a) Show two possible arrangements of the hardware-implementing of a four-input ORgate, using two-input OR gates only.
(b) The truth table represented in Table 1 of Appendix B gives the output F, for inputs A and B. What logic gate would perform this operation? Draw a symbol for this gate.
(c) Apply suitable Boolean laws and theorems to modify the expression for a two-input EX-OR gate,

$$
F=A \oplus B=A \bar{B}+B \bar{A}
$$

in such a way as to implement a two-input EX-OR gate by using the minimum number of two-input NAND gates only.
(d) Use maxterms (not minterms) and a Karnaugh map to convert the Boolean expression,

$$
y=C+\bar{A} B+A \bar{B}
$$

into a canonical POS form.
(e) Write the simplified Boolean expression $F(A, B, C, D)$ for the Karnaugh map shown in Figure 1 of Appendix A.

3 (a) Use AND, OR and NOT gates to construct a circuit that carries out the following logic function:

$$
\begin{equation*}
F=\overline{(A \bar{B} C+\overline{A B})}+A C . \tag{6}
\end{equation*}
$$

(b) Use the transposition theorem to prove that,

$$
\begin{equation*}
[A \bar{B}+\bar{C}+\bar{D}][D+(E+\bar{F}) G]=D(A \cdot \bar{B}+\bar{C})+\bar{D} G(E+\bar{F}) \tag{5}
\end{equation*}
$$

(c) The logic diagram in Figure 2 of Appendix A performs the function of a very
common arithmetic building block. Identify the logic function.
(d) Make a truth table and design a four-line to two-line priority encoder with active HIGH inputs and outputs. Priority is assigned to the higher-order data input line.

4 (a) Figure 3, in Appendix A, shows the internal logic circuit diagram of one of the four D latches of a four-bit D latch in the 7475 IC.
(i) Give an argument to prove that the Q output will track the D input only when the ENABLE input is HIGH.
(ii) Also, prove that during the time the ENABLE input is LOW the Q output holds the value it had just before it went LOW.
(b) It is desired to design a binary ripple counter of the type shown in Figure 4 of Appendix A that is capable of counting the number of items passing on a conveyor belt. Each time an item passes a given point, a pulse is generated that can be used as a clock input. If the maximum number of items to be counted is 6000 , determine the number of flip-flops required.
(c) Determine the number of flip-flops required to construct a MOD-10:
(i) Ring counter;
(ii) Johnson counter.

Also, write the count sequences in the two cases.
5 (a) Determine the resolution of a 12 -bit A / D converter having a full-scale analogue 17 个input voltage of 5 V .
(b) In computer terminology, distinguish between the terms 'memory' and 'storage'.
(c) Two 16 MB RAMs are used to build an extended RAM capacity of 32 MB . Show the configuration and how it works. Also, state the address inputs for which the RAMs will be active. The two RAMs have common I/O pins, a WRITE ENABLE input that is active LOW ($\overline{W E}$) and a CHIP SELECTOR input that is active HIGH (CS).
(d) Make short notes to describe the functions of the following elements of a microprocessor unit:
(i) Data register (DR); [2]
(ii) Address register (AR); [2]
(iii) Arithmetic logic unit (ALU); [2]
(iv) Stack Pointer (SP). [2]

Figure 1

Figure 2

Figure 3

Note: The dashed lines represent an unspecified number of flip-flops connected in the same configuration as FF2 and FF(n-1).

Figure 4

APPENDIX B - TABLE

Table 1

A	B	F
0	0	1
0	1	0
1	0	0
1	1	1

