UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2013/2014

TITLE OF PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MAR-GIN.
- USE THE INFORMATION IN THE NEXT TWO PAGES WHEN NECESSARY.

1

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

Useful Data:

1 unified mass unit (u) = $1.6605 \times 10^{-27} kg = 931.5 MeV/c^2$

Planck's constant $h = 6.63 \times 10^{-34} Js$

Boltzmann's constant $k = 1.38 \times 10^{-23} J/K$

Avogadro's number $N_A=6.022\times 10^{23} mol^{-1}$

Speed of light (vacuum) $c = 3.0 \times 10^8 m/s$

electron mass $m_e = 9.11 \times 10^{-31} kg = 5.4858 \times 10^{-4} u = 0.511 MeV/c^2$

neutron mass $m_n = 1.6749 \times 10^{-27} kg = 1.008665 u = 939.573 MeV/c^2$

proton mass $m_p = 1.6726 \times 10^{-27} kg = 1.0072765 u = 938.280 MeV/c^2$

 $1year = 3.156 \times 10^7 s$

nuclear radius, $R \approx r_0 A^{1/3}$, where $r_0 = 1.2 fm$

Elementary charge, $e = 1.6021 \times 10^{-19}$ C

Electric constant, $\epsilon_0 = 8.854 \times 10^{-12} \quad C^2/J \cdot m$

The table of nuclear properties is provided in the last page.

Nuclide	Z	A	Atomic mass (u)	I^{π}	Abundance or Half life
H	1	1	1.007825	$1/2^{+}$	99.985%
He	2	4	4.002603	0+	99.99986%
Li	3	7	7.016003	$3/2^{-}$	92.5%
Be	4	11	11.021658	$1/2^{+}$	13.8 s (β ⁻)
В	5	11	11.009305	$3/2^{-}$	80.2%
С	6	12	12.00000	0+	99.89%
N	7	15	15.00109	1/2-	0.366%
N	7	18	18.014081	1-	0.63 s
0	8	15	15.003065	$1/2^{-}$	122 s
0	8	16	15.994915	0+	99.76%
0	.8	18	17.999160	0+	0.204%
F	9	18	18.000937	1+	110.0 min
Ne	10	20	19.992436	0+	90.51%
Ne	10	22	21.991383	0+	9.33%
Na	11	${22}$	21.994434	3+	2.60 yrs
Mg	12	21	21.000574	0+	3.86 s
Al	13	27	26.981539	5/2+	100.0%
Si	14	30	29.973770	0+	3.10%
Si	14	32	31.974148	0+	105 yrs
P	15	30	29.978307	1+	2.50 min
P	15	32	31.971725	1+	14.3 days
S	16	32	31.972071	0+	95.02%
Cl	17	37	36.965903	3/2+	24.23%
Ar	18	37	36.966776	$\frac{3/2}{3/2^+}$	35.0 days
K	19	37	36.973377	$\frac{3/2}{3/2^{-}}$	1.23 s
Ca	20	43	42.958766	$7/2^{-}$	0.135%
Ca	$\frac{20}{20}$	$\frac{43}{47}$	46.954543	7/2-	$\frac{0.13576}{4.54 \text{ days } (\beta^-)}$
Sc	$\frac{20}{21}$	$\frac{47}{47}$	46.952409	$7/2^{-}$	$\frac{4.34 \text{ days } (\beta^{-})}{3.35 \text{ days } (\beta^{-})}$
Fe	$\frac{21}{26}$	56	55.934439	$\frac{1/2}{0^+}$	91.8%
Fe	26	60	59.934078	0+	1.5 Myrs
Co	$\frac{20}{27}$	60	59.933820	5+	5.27 yrs
Ni	21	60	59.930788	0+	26.1%
Ni	1			0+	0.91%
Ni	28	64	63.927968		
	28	65	64.930086	$5/2^{-}$	$2.52 \text{ hrs } (\beta^-)$
Cu	29	63	62.929599	$3/2^{-}$ 1 ⁺	69.2% 12.7 hrs
Cu	29	64	63.929800		
Cu	29	65	64.927793	$3/2^+$	30.8%
Zn	30	64	63.929145	0+	48.6%
Ru	44	104	103.905424	0^+	18.7%
Ru	44	105	104.907744	$3/2^+$	$4.44 \text{ hrs } (\beta^{-})$
Pd	46	105	104.905079	5/2+	22.2%
Cs	55	137	136.907073	7/2+	$30.2 \text{ yrs} (\beta^{-})$
Ba	56	137	136.905812	3/2+	11.2%
Tl	81	203	202.972320	$1/2^+$	29.5%
Os	76	191	190.960920	9/2-	15.4 days (β^{-})
Ir	77	191	190.960584	$3/2^+$	37.3%
Au	79	199	198.968254	$3/2^{+}$	16.8%

Question 1: Fundamental Forces	198
(a) Briefly discuss each of the four fundamental forces in nature.	(16)
(b) In lecture we discussed three unifying theories. Write brief notes on each.	(9)

• • • •

4

.

- (a) Qualitatively discuss the fission mechanism.
- (b) Given that the probability of tunneling through the fusion barrier is given by $P \approx \exp\left(-2\int_a^b \sqrt{\frac{2m[V(r)-E]}{\hbar^2}}dr\right)$, where *m* is the reduced mass of the two fusing nuclei, *b* is the classical turning point.
 - i. Show that $b = \frac{Z_1 Z 2 e^2}{4\pi\epsilon_0 E}$
 - ii. Evaluate the constants and show that b can also be written as $b = 1430 \frac{Z_1 Z_2}{E} \text{fm} \cdot$ (3) keV After evaluating the integral, the probability is found to be $P \approx \exp\left(-\sqrt{\frac{E_B}{E}}\right)$, where $E_B = \frac{2\pi^2 Z_1^2 Z_2^2}{(4\pi\epsilon_0 \hbar)^2} m$

(6)

(4)

(5)

- iii. After evaluating the integral, the probability is found to be $P \approx \exp\left(-\sqrt{\frac{E_B}{E}}\right)$, (3) where $E_B = \frac{2\pi^2 Z_1^2 Z_2^2}{(4\pi\epsilon_0 \hbar)^2} m$. By evaluating the constants, show that the barrier height is given by $E_B = 1052 Z_1^2 Z_2^2 \frac{mc^2 keV}{GeV}$.
- iv. Show that for E = 1 keV and E = 10 keV, the ratio of the probabilities is (4) $\frac{P(10keV)}{P(1keV)} = 10^{10}$
- (c) Discuss the criteria for the performance of a fusion reactor.

(a) Using the complete normalized wave function $\psi(r) = \frac{u(r)}{r}$ for the square well with (8)

$$u(r) = A\sin(k_1r), \quad for \quad r < R$$

$$u(r) = C \exp(-k_2 r), \qquad for \quad r > R$$

where $k_1 = \sqrt{2m(E+V_0)/\hbar^2}$ and $k_2 = \sqrt{-2mE/\hbar^2}$, show that the expectation value of the potential energy is

$$\langle V \rangle = \int \psi^* V \psi d^3 r = -V_0 A^2 \left[R/2 - \frac{1}{4k_1} \sin(2k_1 R) \right]$$

(b) Show that the expectation value of the kinetic energy is

$$\langle T \rangle = \frac{\hbar^2}{2m} \int |\frac{\partial \psi}{\partial r}|^2 d^3r = \frac{\hbar^2}{2m} A^2 \left[k_1^2 R / 2 + k_1 / 4 \sin(2k_1 R) + k_2 / 2 \sin^2(k_1 R) \right]$$

(c) Show that for a bound state to exist to exist, it must be true that $\langle T \rangle < -\langle V \rangle$ (5)

(8)

(d) Use the results above to determine an inequality for the minimum value of V_0 that (4) can support a bound state.

Question 4: Nuclear Reactions and Decays
--

(a) Consider the reaction: $A(a,b)B$	
i. What is meant by the Q-value?	(2)
ii. Show that the Q-value is given by the mathematical relation $Q = (M_A + M_a - M_B - M_b) c^2$.	(3)
iii. Furthermore, derive an expression for Q in terms of the mass excess	(4)
(b) Calculate the mass excess for the following nuclides	
i. ⁴ <i>He</i>	(3)
ii. ⁶⁰ <i>Fe</i>	(3)
iii. ²⁰³ <i>Tl</i>	(3)
(c) Given that the atomic mass of ${}^{238}U$ is $238.0508u$ and that the highest energy of an α particle emitted in the decay of ${}^{238}U$ to ${}^{234}Th$ is 4.196 MeV, calculate the mass of ${}^{234}Th$.	(7)
	 i. What is meant by the Q-value? ii. Show that the Q-value is given by the mathematical relation Q = (M_A + M_a - M_B - M_b) c². iii. Furthermore, derive an expression for Q in terms of the mass excess (b) Calculate the mass excess for the following nuclides 4He 6⁰Fe 2⁰³Tl (c) Given that the atomic mass of ²³⁸U is 238.0508u and that the highest energy of an α particle emitted in the decay of ²³⁸U to ²³⁴Th is 4.196 MeV, calculate the mass

(10)

Question 5: The Valley of Stability..... For this problem consider the empirical mass formula for the internal energy per nucleon

$$e = -a_{vol} + a_{surf} \frac{1}{A^{1/3}} + a_C \frac{Z^2}{A^{4/3}} + a_{sym} \left(\frac{N-Z}{A}\right)^2$$

- (a) Describe each of the five terms in the empirical mass formula.
- (b) Show that for nuclei on the stability line we have $Z_0 = \frac{A}{2+xA^{2/3}}$, where $x = \frac{a_C}{2a_{sym}}$. (8)
- (c) Use the result above to show that for nuclei on the stability line the internal energy (7)per nucleon is given by

$$e = -a_{vol} + a_{surf} \frac{1}{A^{1/3}} + a_C \frac{Z_0}{2A^{1/3}}$$