UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION: 2013/2014

TITLE OF PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MAR-GIN.
- USE THE INFORMATION IN THE NEXT TWO PAGES WHEN NECESSARY.

1

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

Useful Data: 1 unified mass unit $(u) = 1.6605 \times 10^{-27} kg = 931.5 MeV/c^2$ Planck's constant $h = 6.63 \times 10^{-34} Js$ Boltzmann's constant $k = 1.38 \times 10^{-23} J/K$ Avogadro's number $N_A = 6.022 \times 10^{23} mol^{-1}$ Speed of light (vacuum) $c = 3.0 \times 10^8 m/s$ electron mass $m_e = 9.11 \times 10^{-31} kg = 5.4858 \times 10^{-4} u = 0.511 MeV/c^2$ neutron mass $m_n = 1.6749 \times 10^{-27} kg = 1.008665 u = 939.573 MeV/c^2$ proton mass $m_p = 1.6726 \times 10^{-27} kg = 1.0072765 u = 938.280 MeV/c^2$ 1year = $3.156 \times 10^7 s$ nuclear radius, $R \approx r_0 A^{1/3}$, where $r_0 = 1.2 fm$ Elementary charge, $e = 1.6021 \times 10^{-19}$ C Electric constant, $\epsilon_0 = 8.854 \times 10^{-12}$ $C^2/J \cdot m$

The table of nuclear properties is provided in the last page.

Nuclide	Z	Α	Atomic mass (u)	17	Abundance or Half life]
H	1	1	1.007825	$1/2^{+}$	99.985%]
He	2	4	4.002603	0+	99.99986%	
Li	3	7	7.016003	$3/2^{-}$	92.5%]
Be	4	11	11.021658	$1/2^+$	$13.8 \text{ s} (\beta^{-})$	2
B	5	11	11.009305	$3/2^{-}$	80.2%	1
С	6	12	12.00000	0+	99.89%	1
N	7	15	15.00109	1/2-	0.366%	1
N	7	18	18.014081	1-	0.63 s	
0	8	15	15.003065	$1/2^{-}$	122 s	1
0	8	16	15.994915	0+	99.76%	1
0	8	18	17.999160	0+	0.204%	1
F	9	18	18.000937	1+	110.0 min	
Ne	10	20	19.992436	0+	90.51%	1
Ne	10	22	21.991383	0+	9.33%	
Na	11	22	21.994434	3+	2.60 yrs	1
Mg	12	21	21.000574	0+	3.86 s	1
Al	13	27	26.981539	$5/2^{+}$	100.0%	-
Si	14	30	29.973770	0+	3.10%	1
Si	14	32	31.974148	0+	105 yrs	1
Р	15	30	29.978307	1+	2.50 min	1
Р	15	32	31.971725	1+	14.3 days	-
S	16	32	31.972071	0+	95.02%	-
Cl	17	37	36.965903	$3/2^{+}$	24.23%	1
Ar -	18	37	36.966776	$3/2^{+}$	35.0 days	-
K	19	37	36.973377	3/2-	1.23 s	1
Ca	20	43	42.958766	7/2-	0.135%	
Ca	20	47	46.954543	$7/2^{-}$	4.54 days (β^-)	-
Sc	21	47	46.952409	7/2-	3.35 days (β^-)	-
Fe	26	56	55.934439	0+	91.8%	1
Fe	26	60	59.934078	0+	1.5 Myrs	1
Со	27	60	59.933820	5+.	5.27 yrs	1
Ni	28	60	59.930788	0+	26.1%	1
Ni	28	64	63.927968	0+	0.91%	1
Ni	28	65	64.930086	5/2-	2.52 hrs (β^{-})	1
Cu	29	63	62.929599	3/2-	69.2%	1.
Cu	29	64	63.929800	1+	12.7 hrs	1
Cu	29	65	64.927793	$3/2^{+}$	30.8%	1
Zn	30	64	63.929145	0+	48.6%	1
Ru	44	104	103.905424	0+	18.7%	1
Ru	44	105	104.907744	$3/2^{+}$	4.44 hrs (β^{-})	1
Pd	46	105	104.905079	5/2+	22.2%	1
Cs	55	137	136.907073	7/2+	$30.2 \text{ yrs} (\beta^{-})$	1
Ba	56	137	136.905812	$3/2^+$	11.2%	-
Tl	81	203	202.972320	$\frac{1}{2^+}$	29.5%	-
Os	76	191	190.960920	$\frac{2}{9/2^{-}}$	$15.4 \text{ days } (\beta^-)$	-
Ir	77	191	190.960584	$3/2^+$	37.3%	
Au	79	199	198.968254	$\frac{-7}{3/2^+}$	16.8%	-

,

.

×

*	
Question 1: Fundamental Forces	
(a) Summarize the standard model of elementary particles.	(9)
(b) If the proton-electron model of the nucleus were valid, show that all neutral atoms would contain an even number of fermions.	(6)
(c) Give two examples of each:	
i. Quarks	(2)
ii. Leptons	(2)
iii. Baryons	(2)
iv. Mesons	(2)
v. Unifying Theories	(2)

.

- (a) Describe the main features of the Rutherford scattering formula.
- (b) Show, classically, that when an incident particle of mass m scatters of a target of (7) mass m_T , the velocities are related by (Note: Lab frame)

(6)

$$v_T^2 \overset{\sqcup}{1} - \frac{m_T}{m} \overset{\sqcup}{=} 2\vec{v}_f \cdot \vec{v}_T$$

where \vec{v}_T and \vec{v}_f are the final velocities of the target and incident particles, respectively.

(c) Use the above result to do the following:

- i. Show that the scattering angle is less than 90° for a beam of deuterons (non- (4) relativistic) elastically scattering of a hydrogen target.
- ii. Show that there is no limit on the scattering angle for a beam of protons (4) scattering of deuterons.
- iii. What are the limits on the scattering angle for a non-relativistic beam of (4) deuterons scattering of a deuteron target?

Question 3: Nuclear Properties

- (a) Show that the dipole moment $\vec{p} = {\mathsf{R} \over r\rho(r)dr}$ is zero for a nucleus.
- (b) Show that the mean-square charge radius of a uniformly charged sphere is $\langle r^2 \rangle = (5)$ $3R^2/5$
- (c) One way of probing nuclear sizes is determining the size of charged matter by means of electron scattering experiments. The experimentally measurable quantity is the the electric form factor $F(\vec{q}) = \exp(i\vec{q}\cdot\vec{r})\rho(\vec{r})d^3r$, which is the Fourier transform of the charge distribution.
 - i. Show that if the charge distribution is spherically symmetric, the the form (6) factor is given by Z

$$F(q^2) = \frac{4\pi}{q} \quad \sin(qr)\rho(r)rdr.$$

ii. Compute the form factor for $\rho(r) = \rho_0$ for r < R zero otherwise.

6

(8)

(6)

Question 4: Radioactivity

- (a) An initial number $N_A(0)$ of nuclei A decay into daughter nuclei B, which is also radioactive. The respective decay probabilities are λ_A and λ_B . If $\lambda_B = 2\lambda_A$,
 - i. Calculate the time (in terms of λ_A) when N_B is maximum.
 - ii. Calculate $N_B(max)$ in terms of $N_A(0)$.
- (b) Given that the production rate of a radioactive nuclide is P nuclei per second, derive the formula $N(t) = \frac{P}{\lambda}(1 \exp(-\lambda t))$ for the production of the nuclide. (λ is the decay constant)

(6)

(4)

(7)

(c) It is desired to determine the age of a wood timber used to construct an ancient (8) shelter. A sample of the wood is analyzed for its ¹⁴C content and gives 2.1 decays per minute. Another sample of the same size from a recently cut tree of the same type gives 5.3 decays per minute. What is the age of the sample? (Note: $t_{1/2} = 5730$ y)

Question 5: β and γ Decay	
(a) The maximum kinetic energy of the posistron spectrum emitted in the decay of a ${}^{11}C \rightarrow {}^{11}B$ is 1.983 MeV. Use this information and the known mass of ${}^{11}B$ to calculate the mass of ${}^{11}C$.	(6)
(b) Supply the missing component(s) in the following processes: i. ${}^{6}He \rightarrow {}^{6}Li + e^{-} +$ ii. ${}^{40}K \rightarrow \nu +$	(2) (2)
(c) Classify the following decays according to degree of forbiddenness: i. ${}^{89}Sr(\frac{5}{2}^+) \rightarrow {}^{89}Y(\frac{1}{2}^-)$	(4)
ii. ${}^{36}Cl(2^+) \rightarrow {}^{36}Ar(0^+)$	(4)

(d) An even-Z, even-N nucleus has the following sequence of levels above its 0^+ ground (7) state: 2^+ (89 keV), 4^+ (288 keV), 6^+ (585 keV), 0^+ (1050 keV), 2^+ (1129 keV). Draw an energy level diagram and show all reasonably probable γ transitions and their multipole assignments.

8

.