UNIVERSITY OF SWAZILAND
 203
 FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS
 SUPPLEMENTARY EXAMINATION: 2013/2014
 TITLE OF PAPER: NUCLEAR PHYSICS
 COURSE NUMBER: P442
 TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION IN THE NEXT TWO PAGES WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

```Useful Data:
    1 unified mass unit (u)=1.6605 \times 10-27 kg = 931.5 MeV/c}/\mp@subsup{c}{}{2
    Planck's constant h=6.63 \times10-34 Js
    Boltzmann's constant k=1.38\times10-23}\textrm{J}/\textrm{K
    Avogadro's number N}\mp@subsup{N}{A}{}=6.022\times1\mp@subsup{0}{}{23}\mp@subsup{\textrm{mol}}{}{-1
    Speed of light (vacuum) c=3.0 }\times1\mp@subsup{0}{}{8}\textrm{m}/\textrm{s
electron mass me. =9.11 \times 10-31 kg=5.4858\times1\mp@subsup{0}{}{-4}u=0.511MeV/c}\mp@subsup{c}{}{2
neutron mass }\mp@subsup{m}{n}{}=1.6749\times1\mp@subsup{0}{}{-27}\textrm{kg}=1.008665u=939.573\textrm{MeV}/\mp@subsup{\textrm{c}}{}{2
proton mass m}\mp@subsup{m}{p}{}=1.6726\times1\mp@subsup{0}{}{-27}\textrm{kg}=1.0072765u=938.280\textrm{MeV}/\mp@subsup{\textrm{c}}{}{2
1year = 3.156 * 107s
nuclear radius, R}\approx\mp@subsup{r}{0}{}\mp@subsup{A}{}{1/3}\mathrm{ , where }\mp@subsup{r}{0}{}=1.2\textrm{fm
Elementary charge, e=1.6021 }\times1\mp@subsup{0}{}{-19}\quad\textrm{C
Electric constant,}\mp@subsup{\epsilon}{0}{}=8.854\times1\mp@subsup{0}{}{-12}\quad\mp@subsup{C}{}{2}/J\cdot
```

The table of nuclear properties is provided in the last page.

Nuclide	Z	A	Atomic mass (1)	i^{π}	Abundance or Half life
H	1	1	1.007825	$1 / 2^{+}$	99.985\%
He	2	4	4.002603	0^{+}	99.99986\%
Li	3	7	7.016003	$3 / 2^{-}$	92.5\%
Be	4	11	11.021658	$1 / 2^{+}$	$13.8 \mathrm{~s}\left(\beta^{-}\right)$
B	5	11	11.009305	$3 / 2^{+}$	80.2\%
C	6	12	12.00000	0^{+}	99.89\%
N	7	15	15.00109	$1 / 2^{-}$	0.366\%
N	7	18	18.014081	1^{-}	0.63 s
0	8	15	15.003065	$1 / 2^{-}$	122 s
0	8	16	15.994915	0^{+}	99.76\%
O	8	18	17.999160	0^{+}	0.204\%
F	9	18	18.000937	1^{+}	110.0 min
Ne	10	20	19.992436	0^{+}	90.51\%
Ne	10	22	21.991383	0^{+}	9.33\%
Na	11	22	21.994434	3^{+}	2.60 yrs
Mg	12	21	21.000574	0^{+}	3.86 s
Al	13	27	26.981539	$5 / 2^{+}$	100.0\%
Si	14	30	29.973770	0^{+}	3.10\%
Si	14	32	31.974148	0^{+}	105 yrs
P	15	30	29.978307	1^{+}	2.50 min
P	15	32	31.971725	1^{+}	14.3 days
S	16	32	31.972071	0^{+}	95.02\%
Cl	17	37	36.965903	$3 / 2^{+}$	24.23\%
Ar	18	37	36.966776	$3 / 2^{+}$	35.0 days
K	19	37	36.973377	$3 / 2^{-}$	1.23 s
Ca	20	43	42.958766	$7 / 2^{-}$	0.135\%
Ca	20	47	46.954543	$7 / 2^{-}$	4.54 days (β^{-})
Sc	21	47	46.952409	$7 / 2^{-}$	3.35 days (β^{-})
Fe	26	56	55.934439	0^{+}	91.8\%
Fe	26	60	59.934078	0^{+}	1.5 Myrs
Co	27	60	59.933820	5^{+}	5.27 yrs
Ni	28	60	59.930788	0^{+}	26.1\%
Ni	28	64	63.927968	0^{+}	0.91\%
Ni	28	65	64.930086	$5 / 2^{-}$	$2.52 \mathrm{hrs}\left(\beta^{-}\right)$
Cu	29	63	62.929599	$3 / 2^{-}$	69.2\%
Cu	29	64	63.929800	1^{+}	12.7 hrs
Cu	29	65	64.927793	$3 / 2^{+}$	30.8\%
Zn	30	64	63.929145	0^{+}	48.6\%
Ru	44	104	103.905424	0^{+}	18.7\%
Ru	44	105	104.907744	$3 / 2^{+}$	$4.44 \mathrm{hrs}\left(\beta^{-}\right)$
Pd	46	105	104.905079	$5 / 2^{+}$	22.2%.
Cs	55	137	136.907073	$7 / 2^{+}$	30.2 yrs (β^{-})
Ba	56	137	136.905812	$3 / 2^{+}$	- 11.2%
TI	81	203	202.972320	$1 / 2^{+}$	29.5\%
Os	76	191	190.960920	9/2-	15.4 days (β^{-})
Ir	77	191	190.960584	$3 / 2^{+}$	37.3\%
Au	79	199	198.968254	$3 / 2^{+}$	16.8\%

(a) Summarize the standard model of elementary particles.
(b) If the proton-electron model of the nucleus were valid, show that all neutral atoms would contain an even number of fermions.
(c) Give two examples of each:
i. Quarks
ii. Leptons
iii. Baryons
iv. Mesons
v. Unifying Theories
Question 2: The Nuclear Atom
(a) Describe the main features of the Rutherford scattering formula. mass m_{T}, the velocities are related by (Note: Lab frame)

$$
\begin{equation*}
v_{T}^{2} 1-\frac{m_{T}}{m}=2 \vec{v}_{f} \cdot \vec{v}_{T} \tag{7}
\end{equation*}
$$

where \vec{v}_{T} and \vec{v}_{f} are the final velocities of the target and incident particles, respectively.
(c) Use the above result to do the following:
i. Show that the scattering angle is less than 90° for a beam of deuterons (nonrelativistic) elastically scattering of a hydrogen target.
ii. Show that there is no limit on the scattering angle for a beam of protons scattering of deuterons.
iii. What are the limits on the scattering angle for a non-relativistic beam of deuterons scattering of a deuteron target?
(a) Show that the dipole moment $\vec{p}=\mathrm{R}_{r \rho(r) d r}$ is zero for a nucleus.
(b) Show that the mean-square charge radius of a uniformly charged sphere is $\left\langle r^{2}\right\rangle=$ $3 R^{2} / 5$
(c) One way of probing nuclear sizes is determining the size of charged matter by means of electron scattering experimenss. The experimentally measurable quantity is the the electric form factor $F(\vec{q})=\exp (\vec{i} \cdot \vec{r}) \rho(\vec{r}) d^{3} r$, which is the Fourier transform of the charge distribution.
i. Show that if the charge distribution is spherically symmetric, the the form factor is given by

$$
F\left(q^{2}\right)=\frac{4 \pi}{q} \quad \sin (q r) \rho(r) r d r
$$

ii. Compute the form factor for $\rho(r)=\rho_{0}$ for $r<R$ zero otherwise.
(a) An initial number $N_{A}(0)$ of nuclei A decay into danghter nuclei B, which is also radioactive. The respective decay probabilities are λ_{A} and λ_{B}. If $\lambda_{B}=2 \lambda_{A}$,
i. Calculate the time (in terms of λ_{A}) when N_{B} is maximum.
ii. Calculate $N_{B}(\max)$ in terms of $N_{A}(0)$.
(b) Given that the production rate of a radioactive muclide is P nuclei per second, derive the formula $N(t)=\frac{P}{\lambda}(1-\exp (-\lambda t))$ for the production of the nuclide. (λ is the decay constant)
(c) It is desired to determine the age of a wood timber used to construct an ancient shelter. A sample of the wood is analyzed for its ${ }^{14} C$ content and gives 2.1 decays per minute. Another sample of the same size from a recently cut tree of the same type gives 5.3 decays per mimute. What is the age of the sample? (Note: $t_{1 / 2}=5730$ y)
(a) The maximum kinetic energy of the posistron spectrum emitted in the decay of $a^{11} C \rightarrow{ }^{11} B$ is 1.983 MeV . Use this information and the known mass of ${ }^{11} B$ to calculate the mass of ${ }^{11} \mathrm{C}$.
(b) Supply the missing component(s) in the following processes:
i. ${ }^{6} \mathrm{He} \rightarrow{ }^{6} \mathrm{Li}+e^{-}+$
ii. ${ }^{40} \mathrm{~K} \rightarrow \nu+$
(c) Classify the following decays according to degree of forbiddenness:
i. ${ }^{89} S r\left(\frac{5}{2}^{+}\right) \rightarrow{ }^{89} Y\left(\frac{1}{2}^{-}\right)$
ii. ${ }^{36} \mathrm{Cl}\left(2^{+}\right) \rightarrow{ }^{36} \mathrm{Ar}\left(0^{+}\right)$
(d) An even- Z , even -N nucleus has the following sequence of levels above its 0^{+}ground state: $2^{+}(89 \mathrm{keV}), 4^{+}(288 \mathrm{keV}), 6^{+}(585 \mathrm{keV}), 0^{+}(1050 \mathrm{keV}), 2^{+}(1129 \mathrm{keV})$. Draw an energy level diagram and show all reasonably probable γ transitions and their multipole assignments.

