UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2013/2014
TITLE OF THE PAPER: COMPUTATIONAL METHODS-II
COURSE NUMBER: P482
TIME ALLOWED:
SECTION A: ONE HOUR
SECTION B: TWO HOURS

INSTRUCTIONS:

THE ARE TWO SECTIONS IN THIS PAPER:

- SECTION A IS A WRITTEN PART. ANSWER THIS SECTION ON THE ANSWER BOOK. IT CARRIES A TOTAL OF 40 MARKS.
- SECTION B IS A PRACTICAL PART WHICH YOU WILL WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. IT CARRIES A TOTAL OF 60 MARKS.
Answer all the questions from section \mathbf{A} and all the questions from section B.
Marks for different sections of each question are shown in the right hand margin.

THE PAPER HAS 5 PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR
(a) A magnet can be modeled by a set of N_{s} spins interacting classically via an interaction energy

$$
E_{i}=-J \sum_{j} s_{i} s_{j}
$$

where the Ising spin at site i can take two values $s_{i}=+1(\uparrow)$ or $s_{i}=-1$ (\downarrow) and the sum is over the j nearest neighbors of i. Consider the following one-dimensional lattice $N_{s}=11$ spins.

$\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow$

(i) Compute the magnetization $m=\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} s_{i}$ and the average energy $\langle E\rangle=$ $\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} E_{i}$ of the 1D Ising spin system.
(ii) Compute the change in the magnetization and the average energy of the system when the spin at the right-end of the lattice is flipped.
(b) In a paramagnetic state (non-magnetic state), the spins are randomly oriented on the lattice. Write a short $f 95$ program that generates the paramagnetic state for the Ising model on a square with N^{2} lattice points, where $N=200$.
(c) A sleep-deprived P482 student (working late on an assignment) is trying to compute the kinetic energy $\frac{1}{2} m v^{2}$ of a particle of mass $m=\frac{3}{2}$ and velocity $v=4$. His three attempts yield the following Fortran 95 snippets. In each case, determine the value assigned to kin_en.
real:: m, v, kin_en
$m=1.5 ; v=4.0$
(i) $k i n _e n=(1 / 2) * m * v * v$
(ii) kin_en $=0.5 * m v * * 2$
(ii) $k i n_{_} e n=0.5 * m * v * v$

Question 2

(a) Compare the following prescriptions for integrating a differential equation $\frac{d x}{d t}=$ $f(x, t) . \Delta t$ is the time step, x_{i} is the current point , x_{i+1} is the next point. For each method, state the order of accuracy (as $\mathcal{O}[(\Delta t)])$, where these represent the lowest-order terms that are not predicted correctly.
(i) $x_{i+1}=x_{i}+\Delta t \cdot f\left(x_{i}, t_{i}\right)$
(ii) $x_{i+1}=x_{i-1}+2 \Delta t \cdot f\left(x_{i}, t_{i}\right)$
(b) A two dimensional space is discretized using a uniform square mesh of grid size Δx i.e, $\psi(i \cdot \Delta x, j \cdot \Delta x)=\psi_{i, j}$. What is an appropriate finite-difference approximation to the Laplacian $\nabla^{2} \psi$? Explain in detail.
(i) $\frac{1}{(\Delta x)^{2}}\left[\psi_{i+1, j}+\psi_{i-1, j}+\psi_{i, j+1}+\psi_{i, j-1}-2 \psi_{i, j}\right]$
(ii) $\frac{1}{(\Delta x)}\left[\psi_{i+1, j}+\psi_{i-1, j}+\psi_{i, j+1}+\psi_{i, j-1}-\psi_{i, j}\right]$
(iii) $\frac{1}{(\Delta x)^{2}}\left[\psi_{i+1, j}+\psi_{i-1, j}+\psi_{i, j+1}+\psi_{i, j-1}-4 \psi_{i, j}\right]$
(c) The diffusion equation is given as

$$
\frac{\partial u(x, t)}{\partial t}=D\left(\frac{\partial^{2} u(x, t)}{\partial x^{2}}\right)
$$

Devise a finite difference approximation to the diffusion equation that leads to the discretized field $u(n)=u(i \cdot \Delta x, n \cdot \Delta t)$ being updated according to

$$
u_{i}^{n+1}=u_{i}^{n}(1-2 s)+s\left(u_{i+1}^{n}+u_{i-1}^{n}\right)
$$

What is the value of s ?
(d) Given a differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}=-g-\gamma \frac{d y(t)}{d t}
$$

where g and γ are constants, detail the algorithm of how to use the Forward Euler method using a fixed stepsize Δt to determine the value of $y(t)$ at a later time t_{f}. Assume that $y(t=0)=y_{0}$ and $\frac{d y(t=0)}{d t}=v_{0}$.

Section B

Note: The answers to this question must include the computer code and output, in addition to any writing that might be needed.

Question 3

A radioactive sample contains N_{0} radioactive nuclei at $t=0$. The decay rate of the nuclei is $\lambda=0.27 \mathrm{~s}^{-1}$. Imagine that the activity of the sample was measure from $t=0$ at time intervals of $0.1 s$ until there are no nuclei left to decay. Note that the probability p of any particle decaying at a given time interval Δt is

$$
p=-\frac{N(t+\Delta t)-N(t)}{N(t)}=\lambda \cdot \Delta t
$$

Utilize the pseudo-code given below to simulate the radioactive decay experiment and to answer the questions below.
(a) Plot the natural logarithm of the number of radioactive nuclei $\ln N(t)$ versus time for $N_{0}=10^{5}, 10^{4}, 10^{3}, 10^{2}$, and 10 . Which values of N_{0} leads to a pronounced stochastic behavior?
[30 marks]
(b) Create a plot showing that the slopes of $\ln N(t)$ versus t is proportional to $-\lambda$.
[10 marks]
(c) Consider a system with a decay rate that fluctuates about an average value over time, i.e $\lambda=[0.27+r(t)]$ where the fluctuating variable $r(t)$ is uniformly distributed in the range $[-0.1,0.1]$. Create a plot showing that the slopes of $\ln N(t)$ versus t for this system. Explain your observations.

A pseudocode for simulating the decay process is simple:

```
! Declaration of parameters: N is number of radioactive nuclei
!dN is the number of decaying nuclei at a time interval dt
integer:: N, dN, i,m
real*8:: ran3, lambda,dt, p,rd
integer::iseed
open(7,file='output.txt')
IInitialization of parameters:
iseed =-1053
N=10000! initial number of radioactive nuclei N}\mp@subsup{N}{0}{
m=0! evolution time = m*dt
lambda =0.27; dt = 0.1
! probability that a radioactive nucleus decay at time t
p=lambda*dt
! computation loop
do while (N.gt.0)
dN=0!
do i=1,N
rd=ran3(iseed)
if (rd.lt.p) then
dN=dN+1
end if
end do
m=m+1
N=N-dN
! output data is N(t) vs time
write(7,) m*dt,N
end do
```

