UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION: 2013/2014

TITLE OF THE PAPER: COMPUTATIONAL METHODS-II

COURSE NUMBER: P482

TIME ALLOWED:

SECTION A:	ONE HOUR
SECTION B:	TWO HOURS

INSTRUCTIONS:

THE ARE TWO SECTIONS IN THIS PAPER:

- SECTION A IS A WRITTEN PART. ANSWER THIS SECTION ON THE ANSWER BOOK. IT CARRIES A TOTAL OF 40 MARKS.
- SECTION B IS A PRACTICAL PART WHICH YOU WILL WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. IT CARRIES A TOTAL OF 60 MARKS.

Answer all the questions from section A and all the questions from section B.

Marks for different sections of each question are shown in the right hand margin.

THE PAPER HAS 5 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Question 1

(a) A magnet can be modeled by a set of N_s spins interacting classically via an interaction energy

$$E_i = -J\sum_j s_i s_j$$

where the Ising spin at site *i* can take two values $s_i = +1$ (\uparrow) or $s_i = -1$ (\downarrow) and the sum is over the *j* nearest neighbors of *i*. Consider the following one-dimensional lattice $N_s = 11$ spins.

- $\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow$
 - (i) Compute the magnetization $m = \frac{1}{N_s} \sum_{i=1}^{N_s} s_i$ and the average energy $\langle E \rangle = \frac{1}{N_s} \sum_{i=1}^{N_s} E_i$ of the 1D Ising spin system.

[4 marks]

(ii) Compute the change in the magnetization and the average energy of the system when the spin at the right-end of the lattice is flipped.

4 marks

(b) In a paramagnetic state (non-magnetic state), the spins are randomly oriented on the lattice. Write a short f95 program that generates the paramagnetic state for the Ising model on a square with N^2 lattice points, where N = 200.

[6 marks]

(c) A sleep-deprived P482 student (working late on an assignment) is trying to compute the kinetic energy $\frac{1}{2}mv^2$ of a particle of mass $m = \frac{3}{2}$ and velocity v = 4. His three attempts yield the following Fortran 95 snippets. In each case, determine the value assigned to kin_en .

real:: m, v, kin_en
m = 1.5; v = 4.0
(i) kin_en = (1/2) * m * v * v
(ii) kin_en = 0.5 * mv * *2
(ii) kin_en = 0.5 * m * v * v

[6 marks]

Question 2

(a) Compare the following prescriptions for integrating a differential equation $\frac{dx}{dt} = f(x,t)$. Δt is the time step, x_i is the current point, x_{i+1} is the next point. For each method, state the order of accuracy (as $\mathcal{O}[(\Delta t)])$, where these represent the lowest-order terms that are not predicted correctly.

(i)
$$x_{i+1} = x_i + \Delta t \cdot f(x_i, t_i)$$

(ii) $x_{i+1} = x_{i-1} + 2\Delta t \cdot f(x_i, t_i)$

[6 marks]

- (b) A two dimensional space is discretized using a uniform square mesh of grid size Δx i.e, $\psi(i \cdot \Delta x, j \cdot \Delta x) = \psi_{i,j}$. What is an appropriate finite-difference approximation to the Laplacian $\nabla^2 \psi$? Explain in detail.
 - (i) $\frac{1}{(\Delta x)^2} [\psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} 2\psi_{i,j}]$ (ii) $\frac{1}{(\Delta x)} [\psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} - \psi_{i,j}]$ (iii) $\frac{1}{(\Delta x)^2} [\psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} - 4\psi_{i,j}]$

[4 marks]

(c) The diffusion equation is given as

$$rac{\partial u(x,t)}{\partial t} = D\left(rac{\partial^2 u(x,t)}{\partial x^2}
ight).$$

Devise a finite difference approximation to the diffusion equation that leads to the discretized field $u(n) = u(i \cdot \Delta x, n \cdot \Delta t)$ being updated according to

$$u_i^{n+1} = u_i^n(1-2s) + s(u_{i+1}^n + u_{i-1}^n)$$

What is the value of s?

[4 marks]

(d) Given a differential equation

$$\frac{d^2y(t)}{dt^2} = -g - \gamma \frac{dy(t)}{dt}$$

where g and γ are constants, detail the algorithm of how to use the Forward Euler method using a fixed stepsize Δt to determine the value of y(t) at a later time t_f . Assume that $y(t=0) = y_0$ and $\frac{dy(t=0)}{dt} = v_0$.

[6 marks]

Section B

Note: The answers to this question must include the computer code and output, in addition to any writing that might be needed.

Question 3

A radioactive sample contains N_0 radioactive nuclei at t = 0. The decay rate of the nuclei is $\lambda = 0.27s^{-1}$. Imagine that the activity of the sample was measure from t = 0 at time intervals of 0.1s until there are no nuclei left to decay. Note that the probability p of any particle decaying at a given time interval Δt is

$$p = -\frac{N(t + \Delta t) - N(t)}{N(t)} = \lambda \cdot \Delta t$$

Utilize the pseudo-code given below to simulate the radioactive decay experiment and to answer the questions below.

(a) Plot the natural logarithm of the number of radioactive nuclei $\ln N(t)$ versus time for $N_0 = 10^5$, 10^4 , 10^3 , 10^2 , and 10. Which values of N_0 leads to a pronounced stochastic behavior?

[30 marks]

(b) Create a plot showing that the slopes of $\ln N(t)$ versus t is proportional to $-\lambda$.

[10 marks]

(c) Consider a system with a decay rate that fluctuates about an average value over time, i.e $\lambda = [0.27 + r(t)]$ where the fluctuating variable r(t) is uniformly distributed in the range [-0.1, 0.1]. Create a plot showing that the slopes of $\ln N(t)$ versus t for this system. Explain your observations.

[20 marks]

4

A pseudocode for simulating the decay process is simple:

! Declaration of parameters: N is number of radioactive nuclei !dN is the number of decaying nuclei at a time interval dt integer:: N, dN, i,m real*8:: ran3, lambda, dt, p, rd integer::iseed open(7,file='output.txt')

!Initialization of parameters: iseed =-1053 N = 10000 ! initial number of radioactive nuclei N_0 m = 0 ! evolution time = m*dt lambda =0.27; dt = 0.1 ! probability that a radioactive nucleus decay at time t p = lambda * dt

! computation loop

, 1 · · · ·

do while (N.gt.0) dN=0 ! do i = 1, N rd = ran3(iseed)if (rd.lt.p) then dN = dN + 1end if end do m = m+1 N = N-dN! output data is N(t) vs time write(7,) m*dt, N end do