UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION: 2015/2016
TITLE OF THE PAPER: COMPUTATIONAL METHODS-I

COURSE NUMBER: P262

TIME ALLOWED:
SECTION A: ONE HOUR
SECTION B: TWO HOURS

INSTRUCTIONS:
THERE ARE TWO SECTIONS IN THIS PAPER:

- SECTION A: IS A WRITTEN PART. ANSWER THIS SECTION ON THE ANSWER BOOK. IT CARRIES A TOTAL OF 40 MARKS.
- SECTION B: IS A PRACTICAL PART WHICH YOU WILL WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. IT CARRIES A TOTAL OF 60 MARKS.

Answer all the questions from Section A and all the questions from Section B.
Marks for different sections of each Question are shown in the right hand margin.

THE PAPER HAS 5 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Section A - Use a pen and paper to answer these questions

Question 1

(a) Translate the following expressions into Maple input statements
(i) $\frac{\partial}{\partial x} e^{-\left(x^{2}+y^{2}\right)}$
(ii) $\int_{0}^{\pi} \cos ^{3}(x)$
(iii) $1+1 / 20+1 / 40+1 / 60+1 / 80+1 / 100+$ \qquad $+1 / 1000$
(iv) $\sqrt{y} e^{-x^{2}}$
(b) Determine the output of the following Maple statements:
(i) $>z:=2+5 * I:$ evalc $(z *$ conjugate $(z))$;
(ii) $>f:=x-2 * x^{\wedge} 2-3 * x+14: f(0)$;
(iii) $>y:=\exp \left(-x^{\wedge} 2\right): \operatorname{diff}(\mathrm{y}, x \$ 2)$;
(iv) $>d:=(x, y, z) \rightarrow \operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2\right): d(-1,2,5)$;
(v) $>\operatorname{mag}:=\operatorname{proc}(\mathrm{a}, \mathrm{b})$
$>$ a.b;
$>$ end;
$>\mathrm{v} 1:=\langle 1,2,3\rangle$; $>\mathrm{v} 2:=<4,5,6>$; $>\operatorname{mag}(\mathrm{v} 1, \mathrm{v} 2)$;
[5 marks]
(c) Write a Maple procedure that uses the Newton's method for finding the square root of a given number r. The iteration is

$$
x_{0}=1 ; \quad x_{n+1}=\frac{x_{n}^{2}+r}{2 x_{n}}, n=0,1,2 \ldots
$$

The stopping criterion is when $\left|x_{n+1}-x_{n}\right|$ is small enough - say less than 0.000001 .

Question 2

(a) The Hamiltonian matrix for a physical system is given as

$$
\mathbf{A}=\left[\begin{array}{cccc}
-2 r & 0 & 0 & v \\
0 & 0 & v & 0 \\
0 & v & 0 & 0 \\
v & 0 & 0 & 2 r
\end{array}\right]
$$

Write Maple commands to
(i) define \mathbf{A}
(ii) compute the determinant and the trace of \mathbf{A}.
(b) The radioactive decay equation can be solve numerical using the equation

$$
N_{i+1}=N_{i}-\Delta t \frac{N_{i}}{\tau}
$$

where N_{i} is the number of nuclei present at an instant $i, \tau=1 s$ is time constant. Assume that the time step $\Delta t=0.1 \mathrm{~s}$ and that the initial number of radioactive nuclei is $N_{0}=1000$. Use above algorithm to create a plot of the data points $\left[t_{i}, N\left(t_{i}\right)\right]$ for $t_{i}=0 . .10 \mathrm{~s}$, with $t_{i}=i \cdot \Delta t$
[6 marks]
(c) A force $\vec{F}=[4 \hat{x}-2 y(t) \hat{y}]$ acts on a body of mass $m=2$. Assume that the initial velocity $\vec{v}(0)=2 \hat{x} \mathrm{~m} / \mathrm{s}$, where \hat{x} and \hat{y} are the unit vectors along the horizontal and vertical axis. We can find the displacement $\mathbf{r}(t)=x(t) \hat{x}+y(t) \hat{x}$ of the body at time t using Newton's second law

$$
\frac{d^{2} x(t)}{d t^{2}}=F_{x} / m, \quad \frac{d^{2} y(t)}{d t^{2}}=F_{y} / m
$$

where F_{x} and F_{y} are the x and y components of the force \vec{F}.
(i) Decompose the above equations into a system of four first-order equations.
[4 marks]
(ii) Write a short Maple program to compute the exact solution of the displacement of the body given that the initial position $\vec{r}(t=0)=[x(0), y(0)]=0$.
[6 marks]

Section B - Practical Part

Question 3

Balls falling out the sky:- Golf and baseball players claim that a hit balls appear to fall straight down out the sky at the end of their trajectories. Your problem is to determine whether there is a simple physics explanation for this effect or whether it is "all in the mind's eye ."

The basic physics is Newton's second law in two dimensions for a realistic projectile. You want to determine if the inclusion of air resistance leads to trajectories that are much steeper at their ends than at their beginnings. The dynamics of a projectile in the presence of a frictional force opposing motion :

$$
m \frac{d^{2} x(t)}{d t^{2}}=F_{x}^{f}, \quad m \frac{d^{2} y(t)}{d t^{2}}=-m g+F_{y}^{f}
$$

where the frictional force $\mathbf{F}^{\mathbf{f}}=\left(F_{x}^{f}, F_{y}^{f}\right)$ and the acceleration due to gravity $g=9.8$ $\mathrm{m} / \mathrm{s}^{2}$. Assume that the frictional force is proportional to square of the projectile's speed.

$$
\mathbf{F}^{f}=-k m|v|^{2} \frac{\mathbf{v}}{|v|}
$$

where the $-v /|v|$ factor ensures that the frictional force is always in a direction opposite that of the velocity. With a constant power law for friction, the equations of motions are

$$
\frac{d^{2} x(t)}{d t^{2}}=-k|v| v_{x}(t), \frac{d^{2}(t)}{d t^{2}}=-g-k|v| v_{y}(t),|v|=\sqrt{v_{x}(t)^{2}+v_{y}(t)^{2}}
$$

where $v_{x}(t)=d x(t) / d t$ and $v_{y}(t)=d y(t) / d t$. Your may assume that the ball is launched with $\mathbf{v}(t=0)=v_{0}[\cos (\theta), \sin (\theta)]$, with $v_{0}=120 \mathrm{~m} / \mathrm{s}$ and $\theta=15$ degrees. Adjust the values of k to find the conditions where the hit ball falls from the sky. Explain the behavior of the projectile for the different values of k.
[30 marks]

Question 4

Debye's theory of solids gives the heat capacity of a solid at temperature T to be

$$
C_{V}=9 V \rho k_{B}\left(\frac{T}{\theta}\right)^{3} \int_{0}^{\theta / T} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x
$$

where V is the volume of the solid, ρ is the number density of atoms, $k_{B}=1.38 \times$ $10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$ is Boltzmann's constant, and θ is the so-called Debye temperature, a property of solids that depends on their density and speed of sound.
(a) Write a Maple procedure $c v(T)$ that calculates C_{V} for a given value of the temperature, for a sample consisting of 1000 cubic centimeters of solid aluminum, which has a number density of $\rho=6.022 \times 10^{28} \mathrm{~m}^{-3}$ and a Debye temperature of $\theta=428 \mathrm{~K}$.
(b) Use your function to make a graph of the heat capacity as a function of temperature from $\mathrm{T}=5 \mathrm{~K}$ to $\mathrm{T}=500 \mathrm{~K}$.
[15 marks]

Question 5

The electrostatic potential $V(x)$ inside a cylinder was measured and the following results were obtained :

$$
\begin{align*}
& V(0.0)=52.640, V(0.2)=48.292, V(0.4)=38.270 \\
& V(0.6)=25.844, V(0.8)=12.648, \text { and } V(1.0)=0.0 \tag{1}
\end{align*}
$$

where x is the distance from the center of the cylinder in metres and V is given in Volts.
(a) Plot the a graph of $V(x)$ versus x using the given data set.
[5 marks]
Symmetry arguments requires that $V(x)$ be an even function of x. Given that

$$
V(x)=\sum_{n=0}^{5} a_{2 n} x^{2 n}=a_{0}+a_{2} x^{2}+a_{4} x^{4}+a_{6} x^{6}+a_{8} x^{8}+a_{10} x^{10}
$$

(b) Use the LeastSquare procedure in Maple to estimate the values of $a_{2 n}$ from the information given in Eq. (1).
[5 marks]
(c) At what distance between $x=0.0$ and $x=1.0 \mathrm{~m}$ is the electric potential equal to 20 Volts? You may need to find the roots of the equation: $V(x)-20=0$.

