UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2015/2016

TITLE OF PAPER : MATHEMATICAL METHODS FOR PHYSICISTS

COURSE NUMBER : P272

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
EACH QUESTION CARRIES 25 MARKS. MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P272 MATHEMATICAL METHODS FOR PHYSICIST

Question one

(a) Given the following relations between the unit vectors of cylindrical, spherical and Cartesian coordinate systems as

$$
\left\{\begin{array} { l }
{ \vec { e } _ { p } = \vec { e } _ { x } \operatorname { c o s } (\phi) + \vec { e } _ { y } \operatorname { s i n } (\phi) } \\
{ \vec { e } _ { \phi } = - \vec { e } _ { x } \operatorname { s i n } (\phi) + \vec { e } _ { y } \operatorname { c o s } (\phi) }
\end{array} \quad \& \quad \left\{\begin{array}{l}
\vec{e}_{r}=\vec{e}_{\rho} \sin (\theta)+\vec{e}_{z} \cos (\theta) \\
\vec{e}_{\theta}=\vec{e}_{p} \cos (\theta)-\vec{e}_{z} \sin (\theta)
\end{array},\right.\right.
$$

and deduce the following:
(i) $\frac{d \vec{e}_{\phi}}{d t}=-\vec{e}_{\rho} \frac{d \phi}{d t} \quad$ in terms of cylindrical unit vectors;
(3 marks)
(ii) $\frac{d \vec{e}_{\phi}}{d t}=-\vec{e}_{r} \sin (\theta) \frac{d \phi}{d t}-\vec{e}_{\theta} \cos (\theta) \frac{d \phi}{d t} \quad$ in terms of spherical unit vectors.
(5 marks)
(b) Given $\vec{F}=\vec{e}_{x}(2 x y)+\vec{e}_{y}\left(x^{2}\right)+\vec{e}_{z}\left(-3 z^{2}\right)$ and find the value of $\int_{P_{1}, L}^{P_{2}} \vec{F} \bullet d \vec{l} \quad$ if $P_{l}:(1,2,0), P_{2}:(7,10,0)$ and
(i) $\quad L$: a straight line from P_{l} to P_{2} on $x-y$ plane, i.e., $\mathrm{z}=0$ plane;
(ii) L : a parabolic path $y=\frac{1}{6} x^{2}+\frac{11}{6}$ from P_{I} to P_{2} on $x-y$ plane. Compare this answer with that obtained in (b)(i) and comment on the conservative nature of the given vector field.
($6+1$ marks)
(iii) Find $\vec{\nabla} \times \vec{F}$. Does this answer in agreement with the comment in (b)(ii)?
($3+1$ marks)

Question two

(a) Given a scalar function in cylindrical coordinates as $f=\rho^{2} \cos (\phi)-4 z^{2}$,
(i) find the value of $\vec{\nabla} f$ at a point $P:\left(10,240^{\circ},-2\right)$,
(3 marks)
(ii) find the value of the directional derivative of f at a point $P:\left(10,240^{\circ},-2\right)$ along the direction of $\vec{e}_{\rho} 8-\vec{e}_{\phi} 4+\vec{e}_{z},(3$ marks)
(iii) find $\vec{\nabla} \times(\vec{\nabla} f)$ and shows that it is zero.
(b) Given a vector field $\vec{F}=\vec{e}_{r}(r \cos (\theta))+\vec{e}_{\theta}(-r)+\vec{e}_{\phi}(3 r \sin \phi)$ in spherical coordinates,
(i) find the value of $\oint_{S} \vec{F} \bullet d \vec{s}$ if $S=S_{1}+S_{2}$ where
$S_{l}:\left(\begin{array}{ll}r=3,0 \leq \theta \leq \frac{\pi}{2}, 0 \leq \phi \leq 2 \pi & \& \\ & \xrightarrow{d \vec{s}=\vec{e}_{r} r^{2} \sin \theta d \theta d \phi} \\ & \xrightarrow{r=3} \vec{e}_{r} 9 \sin \theta d \theta d \phi\end{array}\right)$

i.e., S is a upper-half semi-spherical closed surface centered at the origin with a radius of 3 ,
(8 marks)
(ii) find $\vec{\nabla} \bullet \vec{F}$ and then evaluate the value of $\iiint_{v}(\vec{\nabla} \bullet \vec{F}) d v$ where V is bounded by S given in (b)(i), i.e., $V: 0 \leq r \leq 3,0 \leq \theta \leq \frac{\pi}{2}, 0 \leq \phi \leq 2 \pi \quad \& \quad d v=r^{2} \sin \theta d r d \theta d \phi$. Compare this answer to that obtained in (b)(i) and make a brief comment.
(7+1 marks)

Given the following non-homogeneous differential equation as
$\frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+25 y(t)=f(t)$
(a) (i) if $f(t)=102 \cos (t)+195 \sin (2 t)$ in eq.(1), find its particular solution $y_{p}(t)$ and show that

$$
\begin{equation*}
y_{p}(t)=4 \cos (t)+\sin (t)-4 \cos (2 t)+7 \sin (2 t) \quad \cdots \cdots \quad \text { (2) } \tag{7marks}
\end{equation*}
$$

(ii) if $f(t)=50 t^{2}+24 t$ in eq.(1), find its particular solution and show that

$$
y_{p}(t)=2 t^{2}-\frac{4}{25} \quad \cdots \cdots
$$

(iii) explain why $y_{p}(t)$ is called the steady state solution of the given non-homogeneous differential equation no matter what the given initial conditions are.
(2 mark)
(b) The homogeneous part of the given equation is $\frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+25 y(t)=0$.

Find its general solution $y_{h}(t)$ and show that $y_{h}(t)=k_{1} e^{-3 t} \cos (4 t)+k_{2} e^{-3 t} \sin (4 t)$ where $k_{1} \& k_{2}$ are arbitrary constants.
(4 marks)
(c) If $f(t)=102 \cos (t)+195 \sin (2 t)$ in eq.(1), the general solution to the given non-homogeneous differential equation $y_{g}(t)$ can be written as

$$
\begin{align*}
& y_{g}(t)=y_{h}(t)+y_{p}(t) \\
& =\left(k_{1} e^{-3 t} \cos (4 t)+k_{2} e^{-3 t} \sin (4 t)\right)+(4 \cos (t)+\sin (t)-4 \cos (2 t)+7 \sin (2 t)) \quad \cdots \tag{4}
\end{align*}
$$

Find its specific solution $y_{s}(t)$ if the initial conditions are given as

$$
\begin{align*}
& y(0)=+\left.3 \quad \& \quad \frac{d y(t)}{d t}\right|_{l=0}=-1 \quad, \text { and show that } \\
& y_{s}(t)=\left(3 e^{-3 t} \cos (4 t)-\frac{7}{4} e^{-3 t} \sin (4 t)\right)+(4 \cos (t)+\sin (t)-4 \cos (2 t)+7 \sin (2 t)) \tag{7marks}
\end{align*}
$$

Question four

The longitudinal vibration amplitude $u(x, t)$ of a given vibrating string of length 10 meters, fixed at its two ends ,i.e., $u(0, t)=0 \quad \& \quad u(10, t)=0$, and satisfies the following 1-D wave equation $\frac{\partial^{2} u(x, t)}{\partial t^{2}}=25 \frac{\partial^{2} u(x, t)}{\partial x^{2}} \ldots \ldots$
(a) set $u(x, t)=F(x) G(t)$ and apply the techniques of separation of variables to deduce the following two ordinary differential equations that

$$
\left\{\begin{array}{c}
\frac{d^{2} F(x)}{d x^{2}}=\frac{k}{25} F(x) \tag{2}\\
\frac{d^{2} G(t)}{d t^{2}}=k G(t)
\end{array}\right.
$$

where k is a separation constant.
For our given problem, k needs to be any negative constant, explain briefly why?
(4+2 marks)
(b) Consider the following $u(x, t)$ that

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t) \quad \text { where } \quad u_{n}(x, t)=E_{n} \sin \left(\frac{n \pi x}{10}\right) \cos \left(\frac{n \pi t}{2}\right)
$$

(i) by direct substitution, show that $u_{n}(x, t)$ satisfies the given 1-D wave equation eq.(1),
(ii) show that $u_{n}(x, t)$ satisfies the two fixed conditions, i.e., $u_{n}(0, t)=0 \quad \& \quad u_{n}(10, t)=0$,
(iii) show that $u_{n}(x, t)$ satisfies the zero initial speed condition, i.e., $\left.\frac{\partial u_{n}(x, t)}{\partial t}\right|_{t=0}=0$,
(iv) if the initial position of the vibrating string, i.e., $u(x, 0)$, is given as $u(x, 0)=\left\{\begin{array}{ccl}2 x & \text { for } & 0 \leq x \leq 6 \\ -3 x+30 & \text { for } & 6 \leq x \leq 10\end{array}\right.$, find the values of E_{n} and show that $E_{n}=\frac{100}{n^{2} \pi^{2}} \sin \left(\frac{3 n \pi}{5}\right)$ where $n=1,2,3, \cdots$ Also calculate the value of E_{1}.

Question five

(a) Given the following differential equation as $\frac{d y(x)}{d x}+2 y(x)=0 \quad \ldots \ldots$ (1) ,
(i) by direct substitution, show that $e^{-2 x}$ is its independent solution; (1 mark)
(ii) set $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s} \quad \& \quad a_{0} \neq 0$ and use power series method to find its independent solution truncated up to a_{3} terms, then show that this power series solution is linearly dependent to

$$
e^{-2 x}\left(=1-\frac{2}{1!} x+\frac{4}{2!} x^{2}-\frac{8}{3!} x^{3}+\cdots \cdots \cdot \text { in Taylor series }\right)
$$

(10+1 marks)
(b) Given the following differential equations for a coupled oscillator system as

$$
\left\{\begin{array}{l}
\frac{d^{2} x_{1}(t)}{d t^{2}}=-5 x_{1}(t)+3 x_{2}(t) \\
\frac{d^{2} x_{2}(t)}{d t^{2}}=2 x_{1}(t)-10 x_{2}(t)
\end{array}\right.
$$

(i) set $x_{1}(t)=X_{1} e^{i \omega t}$ and $x_{2}(t)=X_{2} e^{i \omega t}$, deduce the following matrix equation

$$
\begin{aligned}
& A X=-\omega^{2} X \quad \text { where } \\
& A=\left(\begin{array}{cc}
-5 & 3 \\
2 & -10
\end{array}\right) \text { and } X=\binom{X_{1}}{X_{2}}
\end{aligned}
$$

(ii) find the eigenfrequencies ω,
(iii) find the eigenvectors corresponding to each eigenfrequencies found in (b)(ii),
(iv) write down the general solutions for $x_{1}(t) \& x_{2}(t)$ in terms of eigenfrequencies and eigenvectors found in (b)(ii) and (b)(iii).

Useful informations

The transformations between rectangular and spherical coordinate systems are :

$$
\left\{\begin{array} { c }
{ x = r \operatorname { s i n } (\theta) \operatorname { c o s } (\phi) } \\
{ y = r \operatorname { s i n } (\theta) \operatorname { s i n } (\phi) } \\
{ z = r \operatorname { c o s } (\theta) }
\end{array} \quad \& \quad \left\{\begin{array}{c}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right)
\end{array}\right.\right.
$$

The transformations between rectangular and cylindrical coordinate systems are :

$$
\begin{aligned}
& \left\{\begin{array} { c }
{ x = \rho \operatorname { c o s } (\phi) } \\
{ y = \rho \operatorname { s i n } (\phi) } \\
{ z = z }
\end{array} \quad \& \quad \left\{\begin{array}{c}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
z=z
\end{array}\right.\right. \\
& \vec{\nabla} f=\vec{e}_{1} \frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}}+\vec{e}_{2} \frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}}+\vec{e}_{3} \frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}}
\end{aligned} \quad \begin{aligned}
& \vec{\nabla} \bullet \vec{F}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(F_{1} h_{2} h_{3}\right)}{\partial u_{1}}+\frac{\partial\left(F_{2} h_{1} h_{3}\right)}{\partial u_{2}}+\frac{\partial\left(F_{3} h_{1} h_{2}\right)}{\partial u_{3}}\right)
\end{aligned} \quad \begin{aligned}
& \vec{\nabla} \times \vec{F}=\frac{\vec{e}_{1}}{h_{2} h_{3}}\left(\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{2}}-\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{3}}\right)+\frac{\vec{e}_{2}}{h_{1} h_{3}}\left(\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{3}}-\frac{\partial\left(F_{3} h_{3}\right)}{\partial u_{1}}\right)+\frac{\vec{e}_{3}}{h_{1} h_{2}}\left(\frac{\partial\left(F_{2} h_{2}\right)}{\partial u_{1}}-\frac{\partial\left(F_{1} h_{1}\right)}{\partial u_{2}}\right)
\end{aligned}
$$

where $\vec{F}=\vec{e}_{1} F_{1}+\vec{e}_{2} F_{2}+\vec{e}_{3} F_{3} \quad$ and

$$
\begin{aligned}
& \left(u_{1}, u_{2}, u_{3}\right) \text { represents }(x, y, z) \quad \text { for rectangular coordinate system } \\
& \text { represents }(\rho, \phi, z) \quad \text { for cylindrical coordinate system } \\
& \text { represents }(r, \theta, \phi) \quad \text { for spherical coordinate system } \\
& \left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right) \text { represents }\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right) \quad \text { for rectangular coordinate system } \\
& \text { represents }\left(\vec{e}_{\rho}, \vec{e}_{\phi}, \vec{e}_{z}\right) \quad \text { for cylindrical coordinate system } \\
& \text { represents }\left(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\phi}\right) \quad \text { for spherical coordinate system } \\
& \left(h_{1}, h_{2}, h_{3}\right) \text { represents }(1,1,1) \quad \text { for rectangular coordinate system } \\
& \text { represents }(1, \rho, 1) \quad \text { for cylindrical coordinate system } \\
& \text { represents } \quad(1, r, r \sin (\theta)) \quad \text { for spherical coordinate system } \\
& f(t)=f(t+2 L)=f(t+4 L)=\cdots=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi t}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi t}{L}\right) \quad \text { where } \\
& a_{0}=\frac{1}{2 L} \int_{0}^{2 L} f(t) d t, a_{n}=\frac{1}{L} \int_{0}^{2 L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t \& b_{0}=\frac{1}{L} \int_{0}^{2 L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t \text { for } n=1 \text {, } \\
& \int(t \sin (k t)) d t=-\frac{t \cos (k t)}{k}+\frac{\sin (k t)}{k^{2}} \\
& \int(t \cos (k t)) d t=\frac{t \sin (k t)}{k}+\frac{\cos (k t)}{k^{2}}
\end{aligned}
$$

