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P272 MATHEMATICAL METHODS FOR PHYSICIST 

Question one 

(a) 	 Given the following relations between the unit vectors of cylindrical, spherical and 
Cartesian coordinate systems as 

ep ex cos(¢)+ey sin(¢) & {er=epsin(e)+ezcos(e) 

{e", =-ex sin(¢)+e cos(¢) eo =epcos(e)-e sin(e) ,
y 	 z 

and deduce the following: 

(1') 	 d -__ e- d.III terms 0 f cyI'IIId'ncaI umt. vectors; (3 marks)
dt p dt 

d-
e", -. (e) d ¢ - (e) d ¢(ii) 	 -- -e SIll --e cos - in terms of spherical unit 

dt r dt 0 dt 

vectors. 	 (5 marks) 
(b) 	 Given F= ex (2 x y) + e y (X2) + ez (- 3 Z2) and find the value of 

J1'2 - 
11 ,L F. d I if PI: ( 1 , 2 , 0) , P2 : ( 7 , 10 , 0) .' and 

(i) 	 L : a straight line from PI to P2 on x - y plane, i.e., Z = 0 plane; 
(6 marks) 

(ii) 	 L : a parabolic path y =1:.. x 2 + 11 from PI to P2 on x - y plane.
6 6 

Compare this answer with that obtained in (b) (i) and comment on the conservative 
nature of the given vector field. ( 6 + 1 marks ) 

(iii) 	 Find Vx F . Does this answer in agreement with the comment in (b)(ii) ? 

(3+ 1 marks) 
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Question two 

(a) Given a scalar function in cylindrical coordinates as f = p2 CoS(~) - 4 Z2 

(i) 	 find the value of V f at a point P : ( 10 , 2400 
, - 2) , ( 3 marks) 

(ii) 	 find the value of the directional derivative of f at a point 

P: (10 , 2400 
, - 2) along the direction of ep 8 - e~ 4 + ez ,( 3 marks) 

(iii) find Vx (V f) and shows that it is zero. 	 ( 3 marks) 

(b) 	 Given a vector field F er (r cos(O)) + eo (- r) + e~ (3 r sin ~) in spherical coordinates, 

(i) 	 find the value of i.,. •d s if 3 == 31 + 3 2 where 

3} Ir 3,0::;;0::;;; , 0::;;~::;;21C & ds=er r2 sinOdOd~ J 
l 	 r = 3) 9 sin 0 dOd ~ 

8, (B=~, 0';r,;3, 0';rP,;2" & dS=:~:SinBdrdr/J J 

l 	 _--,,-2--+) eo r d r d ~ 
i.e., 3 is a upper-half semi-spherical closed sl,lfface centered at the origin with 
a radius of 3 , ( 8 marks ) 

(ii) 	 find V. F and then evaluate the value of Hl (V. F) d v where 

V is bounded by 3 given in (b )(i) , i.e., 

V: 	 0 ::;; r ::;; 3 , 0::;; 0 ::;; 1C , 0::;; ~ ::;; 21C & d v == r 2 sin 0 d r dOd ~ . 
2 

Compare this answer to that obtained in (b )(i) and make a brief comment. 
(7 + 1 marks) 
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Question three 

Given the following non-homogeneous differential equation as 
2 


d yet) + 6 d yet) + 25 y(t) = J(t) ...... (1) 

dt 2 
 dt 

(a) (i) if J(t) =102 cos(t) + 195 sin(2t) in eq.(I), find its particular solution Yp(t) 

and show that 

Yp(t) = 4 cos(t) + sin(t)-4 cos(2t) + 7 sin(2t) ...... (2), (7 marks) 


(ii) if J(t) =50 t 2 + 24 t in eq.(l) , find its particular solution and show that 

Y (t) =2 t 2 ~ • • .. • • (3) ( 5 marks )• p 25 
(iii) explain why Yp (t) is called the steady state solution of the given 

non-homogeneous differential equation no matter what the given initial conditions 
are. ( 2 mark) 

(b) The homogeneous part of the given equation is d
2 

y~t) + 6 d yet) + 25 yet) o. 
dt- dt 

31 31Find its general solution Yh(t) and show that Yh(t)=''k1 e- cos(4t)+k2 e- sin(4t) 

where k) & k2 are arbitrary constants. ( 4 marks ) 
(c) If J(t) =102 cos(t) + 195 sin(2t) in eq.(l), the general solution to the given 

non-homogeneous differential equation Yg (t) can be written as 

Y g (t) Yh (t) + Y p (t ) 
31 31= (k1 e- cos(4t) + k2 e- sin(4t))+ (4 cos(t) + sin(t)- 4 cos(2t)+ 7 sin(2t)) ... (4) 

Find its specific solution y, (t) if the initial conditions are given as 

yeO) =+ 3 & d yet) = , and show that 
dt 1=0 

31Y,(t) == (3 e- 31 cos(4t) - ~ e- sin(4t)) + (4 cos(t) + sin(t) - 4 cos(2t) + 7 sin(2t)) 

(7 marks) 
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Question four 

The longitudinal vibration amplitude u{x ,t) of a given vibrating string of length 10 meters, 

fixed at its two ends ,i.e., u(O,t) =° & u(lO,t) = 0, and satisfies the following I-D wave 

equation a
2
u(~' 	 =25 a

2 
u(x,t) . ..... (I)

2at ax 

(a) 	 set u{x,t) F{x) G{t) and apply the techniques of separation of variables to deduce the 

following two ordinary differential equations that 

d 2 


dx2 = 25
k 

F{x) ...... (2) 

2 

d G{t) k G{t} ...... {3} 

dt 2 


where k is a separation constant. 
For our given problem, k needs to be any negative constant, explain briefly why? 

(4+2 marks) 
(b) 	 Consider the following u{x,t} that 

00 	

. (nJrxJ (nJrtJu(x,t) =Z:Un(x,t) where u,,(x,t) = E" sm 10 cos -2
,,~l 

(i) 	 by direct substitution, show that un(x,t) satisfies the given I-D wave 

equation eq.(1) , ( 4 marks ) 
(ii) 	 show that un(x,t) satisfies the two fixed conditions, i.e., 

un(O,t)=O & un(lO,t)=O , (2 marks) 

(iii) 	 show that u,,(x,t) satisfies the zero initial speed condition, i.e., 

=° , 	 (3 marks) 
at 

(iv) 	 if the initial position of the vibrating string, i.e., u(x,O) , is given as 

2 x for °~ x ~ 6
u(x,O) = {- 3 x + 30 for 6 ~ x ~ 10 


find the values of En and show that 


100 . (3nJrJEn =	22 sm -- where n = 1,2,3, .. · 

n Jr 5 


Also calculate the value of E] . 	 (9+ 1 marks) 
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Question five 

(a) 	 Given the following differential equation as d y(x) + 2y(x) = 0 .. .. . . (1) , 
dx 

(i) by direct substitution, show that e- 2x is its independent solution; ( 1 mark) 

(ii) set y(x) = L
00 

an xn+s & '* 0 and use power series method to find its ao 
n=O 

independent solution truncated up to terms, then show that this power series a3 

solution is linearly dependent to 

-?x ( 	 1 2 4 2 8 3 • T I . Je - = 	 - x + x - x +.. .. . . In 1 ay or serzes . 
1! 2! 3! 

(10+1 marks) 
(b) 	 Given the following differential equations for a coupled oscillator system as 

d 2 x (I)
_-,-,-I....:..... = - 5 x (t) + 3 x (t)


d t 2 I 2 


(i) 	 set xl(t) = XI ei 
wt and x2(t) X 2 e"ul ,deduce the following matrix equation 

A x:=: o} X where 


5 

A = [-	 3 J and X= [XI J (3 marks)

2 -10 X 2 

(ii) 	 find the eigenfrequencies OJ , ( 4 marks ) 
(iii) 	 find the eigenvectors corresponding to each eigenfrequencies found in (b )(ii), 

(4 marks) 
(iv) 	 write down the general solutions for XI (t) & (t) in terms of 

eigenfrequencies and eigenvectors found in (b )(ii) and (b )(iii). ( 2 marks ) 
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Usefn. informations 
The transformations between rectangular and spherical coordinate systems are : 

X =r sinCe) cos(cp) 

y =r sinCe) sin(cp) & 
{

Z =r cos(e) 

The transformations between rectangular and cylindrical coordinate systems are : 

p ~X2 + y2
X =P cos(cp) 

y =p sin(cp) & cp=tan I(~)
{ 

Z=Z Z=Z 

where F= el F; + e2 F2 + e3 F3 and 

(u i , u2 ' u3 ) represents (x, y , z) for rectangular coordinate system 

represents (p,cp,z) for cylindrical coordinate system 

represents (r ,e,cp) for spherical coordinate system 

(el ,e2,e3) represents (ex, ey ,eJ for rectangular coordinate system 

represents (ep ,e~ ,e,) for cylindrical coordinate system 

represents (el' ,ell> e~) for spherical coordinate system 

represents (1,1,1) for rectangular coordinate system 

represents (1,p,1) for cylindrical coordinate system 

represents (1, r , r sinCe)) for spherical coordinate system 

00 00(n7rt) (n7rt)f(t)=f(t+2L)=f(t+4L)=···=:; Lan cos - + Lbn sin- where 
I1~O L n=I L 

a =:; 1 r
2L 

f(t)dt , an ! r2Lf(t)cos(n7rt)dt & b ! r2Lf(t)sin(n7rt)dt for n 1,o 2 L Jo L Jo L o L Jo L 

f( . (k )) d t cos(k t) sin(k t)
t sm t t = - k + k 2 

t sin(k t) cos(k t)f(t cos(k t)) d t = k + k 2 
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