UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2015/2016
TITLE OF PAPER : ELECTRONICS 1
COURSE NUMBER: P311
TIME ALLOWED : THREE HOURS
INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS
EACH QUESTION CARRIES 25 MARKS
MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE.
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1

(a) (i) Sketch the energy band diagram of silicon that is doped with a Group V element and label it.
(ii) Explain the meaning of the diagram, with reference to majority and minority carriers in the doped silicon lattice.
(b) Consider the following Shockley equation:

$$
I=I_{S}\left[\exp \left(\frac{q V_{D}}{\eta k_{B} T}\right)-1\right],
$$

where the symbols have their usual meanings.
Estimate the current, I_{D} that would flow through a silicon p-n diode at 300 K ,
(i) when the forward voltage is +0.4 V ;
(ii) when the reverse voltage is -5 V .

Assume that the reverse saturation current is $0.05 \mu \mathrm{~A}$.
(c) (i) Use the Shockley equation to derive an expression for the dynamic resistance, $r=d V / d I$ of a silicon p-n junction diode;
(ii) What will be the dynamic resistance of the diode when the forward voltage is 0.4 V .
(d) Assuming the barrier potential to be 0.6 V , calculate the current flowing in Fig. 1.
(3 marks)

Fig. 1

QUESTION 2

(a) Show that the average output voltage, $V_{a v}$ of a half-wave rectifier is approximately onethird of the peak value of the secondary voltage, V_{m}.
(b) The input transformer of a full-wave rectifier has a turns ratio of 9.58:1. The r.m.s. voltage at the secondary is 24 V . Calculate
(i) the r.m.s. input voltage;
(ii) the peak current flowing in a 200Ω load;
(iii) the d.c. current in the 200Ω load.
(c) A Zener diode stabilizing circuit has an input voltage of 18 V and a diode current of 8 mA to give 10 V across a load of 1200Ω. Calculate
(i) the value of the series resistor;
(ii) the diode current when the load resistance is 1000Ω.

QUESTION 3

(a) With the aid of a schematic diagram and drain characteristics,
(i) Explain how the depletion layer in the channel of an n-channel JFET varies with the drain-source voltage;
(ii) Explain how the channel resistance varies with this voltage for small voltages;
(1 mark)
(iii) What effect stops the variation of the depletion layer at high voltages?
(3 marks)
(b) A JFET amplifier has a signal voltage of 1.5 V peak value applied to its input terminals. The drain current then varies by $\pm 2 \mathrm{~mA}$ about its quiescent value. Calculate the transconductance of the JFET.
(3 marks)
(c) Calculate the drain load resistance, R_{2} required for the circuit of Fig. 2 to give a voltage gain of 20 . The JFET used has $g_{m}=4 \times 10^{-3} \mathrm{~S}$ and $r_{d s}=100 \mathrm{k} \Omega$.
(d) Fig. 3 shows both the mutual and drain characteristics of an n-channel JFET. If $V_{D D}=20 \mathrm{~V}$ draw the load line for $R_{\mathrm{L}}=2000 \Omega$ on the drain characteristic and select the operating point $V_{G S}=-2 \mathrm{~V}$. A signal voltage varies $V_{G S}$ between the limits -1 V and -3 V .
(i) Determine from both sets of characteristics the mutual conductance of the device;
(6 marks)
(ii) Calculate the voltage gain (a) from the load line and (b) using the expression $A_{\mathrm{V}}=-g_{m} R_{L}$.

Fig. 2
(4 marks)

Fig. 3

QUESTION 4

(a) With the aid of data estimated from the output characteristics given in Fig. 4, when $V_{C E}$ is kept constant at 8 V , draw and label the transfer characteristic for the transistor.
(4 marks)
(b) The application of a signal voltage of 7.5 mV peak between the base and emitter terminals of an n-p-n transistor causes the emitter current to vary by $\pm 0.5 \mathrm{~mA}$ about its d.c. value. If the common-base current gain is 0.99 ,
(i) Calculate the a.c. voltage developed across a 1200Ω load resistor connected in the collector circuit;
(ii) Calculate the voltage gain of the circuit.
(c) In Fig. 5, $V_{C C}=12 \mathrm{~V}, I_{C}=2 \mathrm{~mA}$ and $V_{B E}=0.65 \mathrm{~V}$.
(i) If $h_{F E}=100$, what is the value of I_{B} ?
(ii) If $1 / 10$ th of the supply voltage appears across R_{3}, calculate R_{3};
(iii) If $V_{C E}=V_{C C} / 2$ calculate R_{L};
(iv) If $I_{R 2}=10 I_{B}$ calculate R_{1} and R_{2}.

Fig. 4

Fig. 5

QUESTION 5

(a) A silicon diode is operated at a junction temperature of $27^{\circ} \mathrm{C}$. For a forward current of $0.15 \mathrm{~mA}, V_{D}$ is found to be 0.4 V . With reference to the following Shockley equation:

$$
I=I_{S}\left[\exp \left(\frac{q V_{D}}{\eta k_{B} T}\right)-1\right]
$$

where the symbols have their usual meanings,
(i) Find the reverse saturation current;
(ii) Find the forward current when $V_{D}=0.5 \mathrm{~V}$.
(b) The unfiltered bridge rectifier circuit shown in Fig. 6 is powered by the $120 \mathrm{~V}_{\mathrm{rms}}$ ac power system, and the turns ratio is $N_{p}: N_{s}=6: 1$. Determine
(i) The rms secondary voltage;
(ii) The peak secondary voltage;
(iii) The dc load voltage;
(iv) The dc load current if $R_{L}=5 \Omega$.

Neglect any diode and transformer losses.
(c) A Zener diode is advertised as having a breakdown voltage of 20 V with a maximum power dissipation of 400 mW . What is the maximum current that should be allowed through the diode?
(d) The drain-source voltage of a JFET is increased from 6 V to 7 V . The resulting increase in the drain current is 0.1 mA . Calculate the output resistance of the FET. Assume that there is no change in the value of the gate-source voltage.
(3 marks)
(e) The circuit shown in Fig. 7 is designed for operation with transistors having a nominal $h_{F E}$ of 100 . Calculate the d.c. collector current. If the range of possible $h_{F E}$ values is from 50 to 160 , calculate the d.c. collector current flowing if a transistor having the maximum $h_{F E}$ is used. Assume $I_{C E O}=1 \mu \mathrm{~A}$ and $V_{B E}=0.62 \mathrm{~V}$.
(6 marks)

Fig. 6

Fig. 7

