UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2015/2016

TITLE OF PAPER : ELECTRONICS 1

COURSE NUMBER: P311

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER <u>ANY FOUR</u> OUT OF FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

OUESTION 1

- (a) (i) Sketch the energy band diagram of silicon that is doped with a Group V element and label it. (4 marks)
 - (ii) Explain the meaning of the diagram, with reference to majority and minority carriers in the doped silicon lattice. (4 marks)
- (b) Consider the following Shockley equation:

$$I = I_{S} \left[\exp \left(\frac{q V_{D}}{\eta k_{B} T} \right) - 1 \right],$$

where the symbols have their usual meanings.

Estimate the current, I_D that would flow through a silicon p-n diode at 300 K,

- (i) when the forward voltage is + 0.4 V; (4 marks)
- (ii) when the reverse voltage is 5 V. (2 marks)

Assume that the reverse saturation current is 0.05 μ A.

- (c) (i) Use the Shockley equation to derive an expression for the dynamic resistance, r = dV/dI of a silicon p-n junction diode; (5 marks)
 - (ii) What will be the dynamic resistance of the diode when the forward voltage is 0.4 V. (3 marks)
- (d) Assuming the barrier potential to be 0.6 V, calculate the current flowing in Fig. 1. (3 marks)

2

(a) Show that the average output voltage, V_{av} of a half-wave rectifier is approxim third of the peak value of the secondary voltage, V_m .	nately one- (7 marks)
(b) The input transformer of a full-wave rectifier has a turns ratio of 9.58:1. The rolling of the secondary is 24 V. Calculate	m.s.
(i) the r.m.s. input voltage;	(3 marks)
(ii) the peak current flowing in a 200 Ω load;	(4 marks)
(iii) the d.c. current in the 200 Ω load.	(2 marks)
(c) A Zener diode stabilizing circuit has an input voltage of 18 V and a diode cur to give 10 V across a load of 1200 Ω . Calculate	rent of 8 mA
(i) the value of the series resistor;	(3 marks)
(ii) the diode current when the load resistance is 1000 Ω .	(6 marks)

(a) With the aid of a schematic diagram and drain characteristics,

- (i) Explain how the depletion layer in the channel of an n-channel JFET varies with the drain-source voltage; (4 marks)
- (ii) Explain how the channel resistance varies with this voltage for small voltages;
- (iii)What effect stops the variation of the depletion layer at high voltages? (3 marks)
- (b) A JFET amplifier has a signal voltage of 1.5 V peak value applied to its input terminals. The drain current then varies by ± 2 mA about its quiescent value. Calculate the transconductance of the JFET. (3 marks)
- (c) Calculate the drain load resistance, R_2 required for the circuit of Fig. 2 to give a voltage gain of 20. The JFET used has $g_m = 4 \times 10^{-3}$ S and $r_{ds} = 100 \text{ k}\Omega$. (4 marks)
- (d) Fig. 3 shows both the mutual and drain characteristics of an n-channel JFET. If $V_{DD} = 20$ V draw the load line for $R_L = 2000 \Omega$ on the drain characteristic and select the operating point $V_{GS} = -2$ V. A signal voltage varies V_{GS} between the limits 1V and 3 V.
 - (i) Determine from both sets of characteristics the mutual conductance of the device; (6 marks)
 - (ii) Calculate the voltage gain (a) from the load line and (b) using the expression $A_v = -g_m R_L.$ (4 marks)

Fig. 2

Fig. 3

(1 mark)

- (a) With the aid of data estimated from the output characteristics given in Fig. 4, when V_{CE} is kept constant at 8 V, draw and label the transfer characteristic for the transistor. (4 marks)
- (b) The application of a signal voltage of 7.5 mV peak between the base and emitter terminals of an n-p-n transistor causes the emitter current to vary by ± 0.5 mA about its d.c. value. If the common-base current gain is 0.99,
 - (i) Calculate the a.c. voltage developed across a 1200 Ω load resistor connected in the collector circuit;
 (4 marks)
 - (ii) Calculate the voltage gain of the circuit. (2 marks)
- (c) In Fig. 5, $V_{CC} = 12$ V, $I_C = 2$ mA and $V_{BE} = 0.65$ V.
 - (i) If $h_{FE} = 100$, what is the value of I_B ? (2 marks)
 - (ii) If 1/10th of the supply voltage appears across R_3 , calculate R_3 ; (2 marks)
 - (iii) If $V_{CE} = V_{CC}/2$ calculate R_L ; (4 marks)
 - (iv) If $I_{R2} = 10I_B$ calculate R_1 and R_2 . (7 marks)

5

(a) A silicon diode is operated at a junction temperature of 27 °C. For a forward current of 0.15 mA, V_D is found to be 0.4 V. With reference to the following Shockley equation:

$$I = I_{S} \left[\exp \left(\frac{qV_{D}}{\eta k_{B}T} \right) - 1 \right]$$

where the symbols have their usual meanings,

- (i) Find the reverse saturation current; (3 marks)
- (ii) Find the forward current when $V_D = 0.5$ V. (3 marks)
- (b) The unfiltered bridge rectifier circuit shown in Fig. 6 is powered by the 120 V_{rms} ac power system, and the turns ratio is N_p : $N_s = 6 : 1$. Determine

(i)	The rms secondary voltage;	(2 marks)
(ii)	The peak secondary voltage;	(2 marks)
(iii)	The dc load voltage;	(2 marks)
(iv)	The dc load current if $R_L = 5 \Omega$.	(2 marks)

Neglect any diode and transformer losses.

- (c) A Zener diode is advertised as having a breakdown voltage of 20 V with a maximum power dissipation of 400 mW. What is the maximum current that should be allowed through the diode? (2 marks)
- (d) The drain-source voltage of a JFET is increased from 6 V to 7 V. The resulting increase in the drain current is 0.1 mA. Calculate the output resistance of the FET. Assume that there is no change in the value of the gate-source voltage.(3 marks)
- (e) The circuit shown in Fig. 7 is designed for operation with transistors having a nominal h_{FE} of 100. Calculate the d.c. collector current. If the range of possible h_{FE} values is from 50 to 160, calculate the d.c. collector current flowing if a transistor having the maximum h_{FE} is used. Assume $I_{CEO} = 1 \ \mu A$ and $V_{BE} = 0.62 \ V$. (6 marks)

*

Fig. 7